Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213443367> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4213443367 endingPage "280" @default.
- W4213443367 startingPage "273" @default.
- W4213443367 abstract "Summary This work studies an experimental design problem where the values of a predictor variable, denoted by $x$, are to be determined with the goal of estimating a function $m(x)$, which is observed with noise. A linear model is fitted to $m(x)$, but it is not assumed that the model is correctly specified. It follows that the quantity of interest is the best linear approximation of $m(x)$, which is denoted by $ell(x)$. It is shown that in this framework the ordinary least squares estimator typically leads to an inconsistent estimation of $ell(x)$, and rather weighted least squares should be considered. An asymptotic minimax criterion is formulated for this estimator, and a design that minimizes the criterion is constructed. An important feature of this problem is that the $x$ values should be random, rather than fixed. Otherwise, the minimax risk is infinite. It is shown that the optimal random minimax design is different from its deterministic counterpart, which was studied previously, and a simulation study indicates that it generally performs better when $m(x)$ is a quadratic or a cubic function. Another finding is that, when the variance of the noise goes to infinity, the random and deterministic minimax designs coincide. The results are illustrated for polynomial regression models and a generalization is given in the Supplementary Material." @default.
- W4213443367 created "2022-02-25" @default.
- W4213443367 creator A5038886007 @default.
- W4213443367 date "2022-02-25" @default.
- W4213443367 modified "2023-09-25" @default.
- W4213443367 title "Optimal minimax random designs for weighted least squares estimators" @default.
- W4213443367 cites W2023832712 @default.
- W4213443367 cites W2036266309 @default.
- W4213443367 cites W2044892297 @default.
- W4213443367 cites W2065233607 @default.
- W4213443367 cites W2081850149 @default.
- W4213443367 cites W2085499762 @default.
- W4213443367 cites W2103368439 @default.
- W4213443367 cites W2132821274 @default.
- W4213443367 cites W2742855836 @default.
- W4213443367 cites W2999594302 @default.
- W4213443367 cites W3098045837 @default.
- W4213443367 cites W3110910124 @default.
- W4213443367 cites W3111341652 @default.
- W4213443367 cites W4240874411 @default.
- W4213443367 cites W4244612695 @default.
- W4213443367 cites W4300879629 @default.
- W4213443367 doi "https://doi.org/10.1093/biomet/asac016" @default.
- W4213443367 hasPublicationYear "2022" @default.
- W4213443367 type Work @default.
- W4213443367 citedByCount "0" @default.
- W4213443367 crossrefType "journal-article" @default.
- W4213443367 hasAuthorship W4213443367A5038886007 @default.
- W4213443367 hasBestOaLocation W42134433672 @default.
- W4213443367 hasConcept C105795698 @default.
- W4213443367 hasConcept C117148685 @default.
- W4213443367 hasConcept C122123141 @default.
- W4213443367 hasConcept C126255220 @default.
- W4213443367 hasConcept C133939421 @default.
- W4213443367 hasConcept C134306372 @default.
- W4213443367 hasConcept C14036430 @default.
- W4213443367 hasConcept C149728462 @default.
- W4213443367 hasConcept C165646398 @default.
- W4213443367 hasConcept C177148314 @default.
- W4213443367 hasConcept C185429906 @default.
- W4213443367 hasConcept C188649462 @default.
- W4213443367 hasConcept C28826006 @default.
- W4213443367 hasConcept C33923547 @default.
- W4213443367 hasConcept C78458016 @default.
- W4213443367 hasConcept C86803240 @default.
- W4213443367 hasConcept C90119067 @default.
- W4213443367 hasConcept C9936470 @default.
- W4213443367 hasConceptScore W4213443367C105795698 @default.
- W4213443367 hasConceptScore W4213443367C117148685 @default.
- W4213443367 hasConceptScore W4213443367C122123141 @default.
- W4213443367 hasConceptScore W4213443367C126255220 @default.
- W4213443367 hasConceptScore W4213443367C133939421 @default.
- W4213443367 hasConceptScore W4213443367C134306372 @default.
- W4213443367 hasConceptScore W4213443367C14036430 @default.
- W4213443367 hasConceptScore W4213443367C149728462 @default.
- W4213443367 hasConceptScore W4213443367C165646398 @default.
- W4213443367 hasConceptScore W4213443367C177148314 @default.
- W4213443367 hasConceptScore W4213443367C185429906 @default.
- W4213443367 hasConceptScore W4213443367C188649462 @default.
- W4213443367 hasConceptScore W4213443367C28826006 @default.
- W4213443367 hasConceptScore W4213443367C33923547 @default.
- W4213443367 hasConceptScore W4213443367C78458016 @default.
- W4213443367 hasConceptScore W4213443367C86803240 @default.
- W4213443367 hasConceptScore W4213443367C90119067 @default.
- W4213443367 hasConceptScore W4213443367C9936470 @default.
- W4213443367 hasIssue "1" @default.
- W4213443367 hasLocation W42134433671 @default.
- W4213443367 hasLocation W42134433672 @default.
- W4213443367 hasOpenAccess W4213443367 @default.
- W4213443367 hasPrimaryLocation W42134433671 @default.
- W4213443367 hasRelatedWork W1973700588 @default.
- W4213443367 hasRelatedWork W2000503706 @default.
- W4213443367 hasRelatedWork W2111275671 @default.
- W4213443367 hasRelatedWork W2162296474 @default.
- W4213443367 hasRelatedWork W2314445535 @default.
- W4213443367 hasRelatedWork W2318326525 @default.
- W4213443367 hasRelatedWork W2618253902 @default.
- W4213443367 hasRelatedWork W4213443367 @default.
- W4213443367 hasRelatedWork W643184171 @default.
- W4213443367 hasRelatedWork W1963838181 @default.
- W4213443367 hasVolume "110" @default.
- W4213443367 isParatext "false" @default.
- W4213443367 isRetracted "false" @default.
- W4213443367 workType "article" @default.