Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213447561> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4213447561 endingPage "470" @default.
- W4213447561 startingPage "461" @default.
- W4213447561 abstract "In India, the crime percentage is growing day by day. It is essential to develop different modern advanced tools and techniques to predict the rate and time of the crime events in advance. This prediction will enable the police to improve the monitoring/vigilance and strengthen intelligence in the particular district to avoid such crime events. There are several Spatiotemporal statistical methods are used to predict such events in the past. Forecasting crime event rate prediction is a central part of setting a prediction approach or taking suitable timely action to reduce the crime rate. Additionally, using this Long short-term memory (LSTM) that one can analyze the relationships among long-term data utilizing its functions. Therefore in this work, we attempted to forecast the crime rate using the CNN-LSTM model. For this research, we utilized the crime dataset taken from the NCRB for three years. We chose four features: murder, rape, theft, and offenses against property. Initially, we use CNN to excerpt the attributes from the dataset and we used LSTM to forecast the crime rate. During the experiments, we found that the CNN along with the LSTM model could provide a trustworthy crime predicting method with high forecast accurateness. This method is a new exploration idea for crime rate forecasting as well as a good prediction technique." @default.
- W4213447561 created "2022-02-25" @default.
- W4213447561 creator A5012391341 @default.
- W4213447561 creator A5080192205 @default.
- W4213447561 date "2022-01-01" @default.
- W4213447561 modified "2023-10-01" @default.
- W4213447561 title "Forecasting Crime Event Rate with a CNN-LSTM Model" @default.
- W4213447561 cites W2054413229 @default.
- W4213447561 cites W2112796928 @default.
- W4213447561 cites W2592442970 @default.
- W4213447561 cites W2613041923 @default.
- W4213447561 cites W2632538366 @default.
- W4213447561 cites W2753216690 @default.
- W4213447561 cites W2808425487 @default.
- W4213447561 cites W2885687276 @default.
- W4213447561 cites W2908786777 @default.
- W4213447561 cites W2944520343 @default.
- W4213447561 cites W2964844976 @default.
- W4213447561 cites W2983165041 @default.
- W4213447561 cites W2993399067 @default.
- W4213447561 cites W2998469077 @default.
- W4213447561 cites W3036317400 @default.
- W4213447561 cites W3084405808 @default.
- W4213447561 cites W3107119534 @default.
- W4213447561 cites W3110420963 @default.
- W4213447561 cites W3127349436 @default.
- W4213447561 doi "https://doi.org/10.1007/978-981-16-7167-8_33" @default.
- W4213447561 hasPublicationYear "2022" @default.
- W4213447561 type Work @default.
- W4213447561 citedByCount "2" @default.
- W4213447561 countsByYear W42134475612023 @default.
- W4213447561 crossrefType "book-chapter" @default.
- W4213447561 hasAuthorship W4213447561A5012391341 @default.
- W4213447561 hasAuthorship W4213447561A5080192205 @default.
- W4213447561 hasConcept C119857082 @default.
- W4213447561 hasConcept C121332964 @default.
- W4213447561 hasConcept C133488467 @default.
- W4213447561 hasConcept C147168706 @default.
- W4213447561 hasConcept C153701036 @default.
- W4213447561 hasConcept C154945302 @default.
- W4213447561 hasConcept C15744967 @default.
- W4213447561 hasConcept C2779662365 @default.
- W4213447561 hasConcept C2993718618 @default.
- W4213447561 hasConcept C38652104 @default.
- W4213447561 hasConcept C41008148 @default.
- W4213447561 hasConcept C50644808 @default.
- W4213447561 hasConcept C62520636 @default.
- W4213447561 hasConcept C73484699 @default.
- W4213447561 hasConceptScore W4213447561C119857082 @default.
- W4213447561 hasConceptScore W4213447561C121332964 @default.
- W4213447561 hasConceptScore W4213447561C133488467 @default.
- W4213447561 hasConceptScore W4213447561C147168706 @default.
- W4213447561 hasConceptScore W4213447561C153701036 @default.
- W4213447561 hasConceptScore W4213447561C154945302 @default.
- W4213447561 hasConceptScore W4213447561C15744967 @default.
- W4213447561 hasConceptScore W4213447561C2779662365 @default.
- W4213447561 hasConceptScore W4213447561C2993718618 @default.
- W4213447561 hasConceptScore W4213447561C38652104 @default.
- W4213447561 hasConceptScore W4213447561C41008148 @default.
- W4213447561 hasConceptScore W4213447561C50644808 @default.
- W4213447561 hasConceptScore W4213447561C62520636 @default.
- W4213447561 hasConceptScore W4213447561C73484699 @default.
- W4213447561 hasLocation W42134475611 @default.
- W4213447561 hasOpenAccess W4213447561 @default.
- W4213447561 hasPrimaryLocation W42134475611 @default.
- W4213447561 hasRelatedWork W2961085424 @default.
- W4213447561 hasRelatedWork W3046775127 @default.
- W4213447561 hasRelatedWork W3170094116 @default.
- W4213447561 hasRelatedWork W4205958290 @default.
- W4213447561 hasRelatedWork W4213447561 @default.
- W4213447561 hasRelatedWork W4285260836 @default.
- W4213447561 hasRelatedWork W4286629047 @default.
- W4213447561 hasRelatedWork W4306321456 @default.
- W4213447561 hasRelatedWork W4306674287 @default.
- W4213447561 hasRelatedWork W4224009465 @default.
- W4213447561 isParatext "false" @default.
- W4213447561 isRetracted "false" @default.
- W4213447561 workType "book-chapter" @default.