Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213447652> ?p ?o ?g. }
- W4213447652 endingPage "362" @default.
- W4213447652 startingPage "349" @default.
- W4213447652 abstract "SUMMARY This work presents a machine-learning-based framework to determine unknown coefficients in seismic wave equations for porous media saturated with fluids by using real data as labels, which are velocities of P and S waves. The coefficients are functions of basic rock physics parameters. By using this framework, the trained neural networks incorporate certain mathematical and physical constraints on the coefficients. Working on a single-fluid model, we train the networks with synthetic as well as real data sets. The prediction results show that the learned model is inherently stable, has good physical properties and can accurately predict synthetic data as well as real logging data of shale reservoirs with relative mean square errors less than 5 per cent. They also demonstrate that the wave propagation phenomenon corresponding to the logging data can be well described with the single-fluid model." @default.
- W4213447652 created "2022-02-25" @default.
- W4213447652 creator A5023454820 @default.
- W4213447652 creator A5076243430 @default.
- W4213447652 date "2022-02-25" @default.
- W4213447652 modified "2023-10-10" @default.
- W4213447652 title "Learning stable seismic wave equations for porous media from real data" @default.
- W4213447652 cites W1868136339 @default.
- W4213447652 cites W1969632729 @default.
- W4213447652 cites W1972523397 @default.
- W4213447652 cites W1973300065 @default.
- W4213447652 cites W1990958245 @default.
- W4213447652 cites W1997476422 @default.
- W4213447652 cites W2000474073 @default.
- W4213447652 cites W2015919564 @default.
- W4213447652 cites W2018490610 @default.
- W4213447652 cites W2034041663 @default.
- W4213447652 cites W2052809295 @default.
- W4213447652 cites W2071094708 @default.
- W4213447652 cites W2076330525 @default.
- W4213447652 cites W2081429816 @default.
- W4213447652 cites W2083864960 @default.
- W4213447652 cites W2095352065 @default.
- W4213447652 cites W2162871601 @default.
- W4213447652 cites W2171903412 @default.
- W4213447652 cites W2239232218 @default.
- W4213447652 cites W2345394035 @default.
- W4213447652 cites W2793289348 @default.
- W4213447652 cites W2899283552 @default.
- W4213447652 cites W2962766992 @default.
- W4213447652 cites W2964079102 @default.
- W4213447652 cites W2979452481 @default.
- W4213447652 cites W2981502832 @default.
- W4213447652 cites W2981906852 @default.
- W4213447652 cites W2996777441 @default.
- W4213447652 cites W2998593675 @default.
- W4213447652 cites W3000425646 @default.
- W4213447652 cites W3006689658 @default.
- W4213447652 cites W3007857100 @default.
- W4213447652 cites W3014468003 @default.
- W4213447652 cites W3028570350 @default.
- W4213447652 cites W3047011887 @default.
- W4213447652 cites W3094438641 @default.
- W4213447652 cites W3100968477 @default.
- W4213447652 cites W3108553599 @default.
- W4213447652 cites W3110103561 @default.
- W4213447652 cites W3110418556 @default.
- W4213447652 cites W3113027141 @default.
- W4213447652 cites W3115283966 @default.
- W4213447652 cites W3115693789 @default.
- W4213447652 cites W3137392741 @default.
- W4213447652 cites W3146001459 @default.
- W4213447652 cites W3177439121 @default.
- W4213447652 cites W3203047103 @default.
- W4213447652 doi "https://doi.org/10.1093/gji/ggac082" @default.
- W4213447652 hasPublicationYear "2022" @default.
- W4213447652 type Work @default.
- W4213447652 citedByCount "0" @default.
- W4213447652 crossrefType "journal-article" @default.
- W4213447652 hasAuthorship W4213447652A5023454820 @default.
- W4213447652 hasAuthorship W4213447652A5076243430 @default.
- W4213447652 hasConcept C105569014 @default.
- W4213447652 hasConcept C11413529 @default.
- W4213447652 hasConcept C127313418 @default.
- W4213447652 hasConcept C154945302 @default.
- W4213447652 hasConcept C160920958 @default.
- W4213447652 hasConcept C187320778 @default.
- W4213447652 hasConcept C35817400 @default.
- W4213447652 hasConcept C41008148 @default.
- W4213447652 hasConcept C50644808 @default.
- W4213447652 hasConcept C6648577 @default.
- W4213447652 hasConcept C8058405 @default.
- W4213447652 hasConceptScore W4213447652C105569014 @default.
- W4213447652 hasConceptScore W4213447652C11413529 @default.
- W4213447652 hasConceptScore W4213447652C127313418 @default.
- W4213447652 hasConceptScore W4213447652C154945302 @default.
- W4213447652 hasConceptScore W4213447652C160920958 @default.
- W4213447652 hasConceptScore W4213447652C187320778 @default.
- W4213447652 hasConceptScore W4213447652C35817400 @default.
- W4213447652 hasConceptScore W4213447652C41008148 @default.
- W4213447652 hasConceptScore W4213447652C50644808 @default.
- W4213447652 hasConceptScore W4213447652C6648577 @default.
- W4213447652 hasConceptScore W4213447652C8058405 @default.
- W4213447652 hasFunder F4320321001 @default.
- W4213447652 hasFunder F4320335777 @default.
- W4213447652 hasIssue "1" @default.
- W4213447652 hasLocation W42134476521 @default.
- W4213447652 hasOpenAccess W4213447652 @default.
- W4213447652 hasPrimaryLocation W42134476521 @default.
- W4213447652 hasRelatedWork W1968527418 @default.
- W4213447652 hasRelatedWork W2122637380 @default.
- W4213447652 hasRelatedWork W2214518107 @default.
- W4213447652 hasRelatedWork W2358241467 @default.
- W4213447652 hasRelatedWork W2359463116 @default.
- W4213447652 hasRelatedWork W2362127092 @default.
- W4213447652 hasRelatedWork W2362875760 @default.
- W4213447652 hasRelatedWork W2392518446 @default.
- W4213447652 hasRelatedWork W2393554192 @default.