Matches in SemOpenAlex for { <https://semopenalex.org/work/W4213450161> ?p ?o ?g. }
- W4213450161 abstract "Technology has made great developments in electronic device speed, but optical devices operate in the time-domain unreachable to electronics. Optical devices have no competition in the time domain less than 1 picosecond. Photonic devices can switch and process light signals without converting them into electronic form. Major advantages of these devices are speed and conservation of bandwidth. Switching is performed through changes in refractive index of the material that are proportional to the light intensity. This particular feature is the result of third-order dielectric susceptibility, χ (3) , or “optical Kerr susceptibility”, which is related to the nonlinear part of the total refractive index. Future prospects in photonic switching and information processing critically depend on the progress towards improved photonic materials with significantly enhanced Kerr susceptibilities. Optically isotropic materials like silica glasses that have inversion symmetry intrinsically possess some third-order optical nonlinearities at λ = 1.06 µm. This, combined with extremely low absorption coefficient of silica glasses, allows all-optical switching between two waveguides embedded in a silica fiber simply by controlling the optical pulse intensity. Plasmonic nanoparticles in dielectric media lead to the generation of surface-plasmons in the neighborhood of dielectric surfaces, resulting in a local evanescent field that experiences dielectric confinement. This field affects the coherent oscillation of dipoles in the conduction band thus enhancing the effective third-order nonlinearity. The strength of the nonlinearity is influenced by controlling the “surface plasmon resonance” (SPR) band by tuning the size and shape of the nanomaterials. The incorporation of metal nanoclusters in glasses have been found to induce desired third-order optical non-linearities in the composite at wavelengths very close to that of the characteristic SPR of the metal clusters. Ion implantation is a potential method for inducing colloid formation at a high local concentration unachievable by chemical doping or melt-glass fabrication process and for confining the nonlinearities to specific regions in various host matrices. Metal-ion induced colloid generation in bulk silica glasses has shown that these nanocluster–glass composites under favorable circumstances have significant enhancement of χ (3) with picosecond to femtosecond temporal responses. The extraordinary achievements in developing such novel photonic materials have opened the way for advances in photonic devices, such as all-optical switching, coupled waveguides as a directional coupler, etc." @default.
- W4213450161 created "2022-02-25" @default.
- W4213450161 creator A5021060078 @default.
- W4213450161 creator A5083876599 @default.
- W4213450161 date "2022-01-01" @default.
- W4213450161 modified "2023-09-25" @default.
- W4213450161 title "Metal Quantum Dot – Glass Composites as Nonlinear Optical Materials for Photonic Applications" @default.
- W4213450161 cites W1659546894 @default.
- W4213450161 cites W1821523455 @default.
- W4213450161 cites W1963970706 @default.
- W4213450161 cites W1965069306 @default.
- W4213450161 cites W1966794343 @default.
- W4213450161 cites W1967090957 @default.
- W4213450161 cites W1968106738 @default.
- W4213450161 cites W1969798548 @default.
- W4213450161 cites W1970466308 @default.
- W4213450161 cites W1971730556 @default.
- W4213450161 cites W1973702056 @default.
- W4213450161 cites W1975826300 @default.
- W4213450161 cites W1980807995 @default.
- W4213450161 cites W1983598761 @default.
- W4213450161 cites W1983909348 @default.
- W4213450161 cites W1993843132 @default.
- W4213450161 cites W1996888128 @default.
- W4213450161 cites W1997830732 @default.
- W4213450161 cites W1999306934 @default.
- W4213450161 cites W2001806325 @default.
- W4213450161 cites W2009253763 @default.
- W4213450161 cites W2012991530 @default.
- W4213450161 cites W2015363530 @default.
- W4213450161 cites W2018549006 @default.
- W4213450161 cites W2020687655 @default.
- W4213450161 cites W2026311367 @default.
- W4213450161 cites W2026981878 @default.
- W4213450161 cites W2027633675 @default.
- W4213450161 cites W2034116835 @default.
- W4213450161 cites W2034880062 @default.
- W4213450161 cites W2036728434 @default.
- W4213450161 cites W2037974629 @default.
- W4213450161 cites W2042176947 @default.
- W4213450161 cites W2043931729 @default.
- W4213450161 cites W2044830281 @default.
- W4213450161 cites W2045276693 @default.
- W4213450161 cites W2047255008 @default.
- W4213450161 cites W2049491080 @default.
- W4213450161 cites W2049736146 @default.
- W4213450161 cites W2051466044 @default.
- W4213450161 cites W2053116772 @default.
- W4213450161 cites W2054037985 @default.
- W4213450161 cites W2054060029 @default.
- W4213450161 cites W2055585742 @default.
- W4213450161 cites W2059378858 @default.
- W4213450161 cites W2065581105 @default.
- W4213450161 cites W2067326523 @default.
- W4213450161 cites W2068670668 @default.
- W4213450161 cites W2069512473 @default.
- W4213450161 cites W2073517241 @default.
- W4213450161 cites W2074542698 @default.
- W4213450161 cites W2075816885 @default.
- W4213450161 cites W2076930391 @default.
- W4213450161 cites W2077296290 @default.
- W4213450161 cites W2080453918 @default.
- W4213450161 cites W2080827655 @default.
- W4213450161 cites W2081138480 @default.
- W4213450161 cites W2085507500 @default.
- W4213450161 cites W2091271507 @default.
- W4213450161 cites W2091327920 @default.
- W4213450161 cites W2091723156 @default.
- W4213450161 cites W2093671237 @default.
- W4213450161 cites W2097578667 @default.
- W4213450161 cites W2098992799 @default.
- W4213450161 cites W2104611597 @default.
- W4213450161 cites W2108525849 @default.
- W4213450161 cites W2116021341 @default.
- W4213450161 cites W2117305317 @default.
- W4213450161 cites W2121252431 @default.
- W4213450161 cites W2129159072 @default.
- W4213450161 cites W2134098286 @default.
- W4213450161 cites W2140698391 @default.
- W4213450161 cites W2145993285 @default.
- W4213450161 cites W2169618905 @default.
- W4213450161 cites W2174528606 @default.
- W4213450161 cites W2756678784 @default.
- W4213450161 cites W3044750868 @default.
- W4213450161 cites W4248797402 @default.
- W4213450161 cites W4254481993 @default.
- W4213450161 cites W793859467 @default.
- W4213450161 cites W886992204 @default.
- W4213450161 doi "https://doi.org/10.1016/b978-0-12-819728-8.00009-7" @default.
- W4213450161 hasPublicationYear "2022" @default.
- W4213450161 type Work @default.
- W4213450161 citedByCount "0" @default.
- W4213450161 crossrefType "book-chapter" @default.
- W4213450161 hasAuthorship W4213450161A5021060078 @default.
- W4213450161 hasAuthorship W4213450161A5083876599 @default.
- W4213450161 hasConcept C101336846 @default.
- W4213450161 hasConcept C110879396 @default.
- W4213450161 hasConcept C120665830 @default.
- W4213450161 hasConcept C121332964 @default.
- W4213450161 hasConcept C124657808 @default.