Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214485280> ?p ?o ?g. }
- W4214485280 endingPage "123644" @default.
- W4214485280 startingPage "123644" @default.
- W4214485280 abstract "Hydrothermal carbonization is an effective and environmentally friendly biomass pretreatment technology, which converts high moisture biomass into homogeneous, carbon–rich, and high calorific value solid hydrochar. This study aimed to predict the fuel properties of the hydrochar based on hydrothermal conditions and biomass characteristics by machine learning (ML) models. Artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithm was proposed and developed based on 296 data points collected from abundant previous studies, and the prediction capability is analyzed with ordinary ANN model. The results showed that particle swarm optimization–neural network (PSO–NN) model with optimal hyper–parameters can reduce iteration time, and improve the stability and accuracy of ANN model. Fuels properties of hydrochar were predicted by PSO–NN model with R2 greater than 0.85 and the convergence speed is increased by 26.8%. Feature importance and correlation were explored by the integration of PSO–NN model and model explainer based on SHAP methodology. The result showed that the carbon content in raw biomass was the significant feature impacting mass yield, and the mass yield of hydrochar mainly depended on elemental composition of feedstock. The HTC temperature of water is the most important factor affecting HHV of the hydrochar, so raising hydrothermal temperature is the best way to improve the HHV. N content was considered as the most important parameter for the N/C molar ratio among all the evaluated features. The O content of the raw biomass had obvious influence on the ASH content of hydrochar, and the influence of operating conditions for ash content changes only accounted for 14.3%, which indicated that the removing efficiency of ash from biomass was low only by changing the operating conditions. Both DHD and DCD of hydrochars were most affected by temperature, and the ash content played a significant role in the prediction of the DHD. Furthermore, we found that most of ash remained in feedstock negatively affected DHD of the hydrochar but had a positive effect on DCD. The PSO–NN model can be used for pre–experiment condition design, which is convenient for researchers to obtain ideal hydrothermal products." @default.
- W4214485280 created "2022-03-02" @default.
- W4214485280 creator A5008976005 @default.
- W4214485280 creator A5064078067 @default.
- W4214485280 creator A5065058975 @default.
- W4214485280 creator A5066991699 @default.
- W4214485280 creator A5089769558 @default.
- W4214485280 date "2022-06-01" @default.
- W4214485280 modified "2023-10-16" @default.
- W4214485280 title "Prediction and evaluation of fuel properties of hydrochar from waste solid biomass: Machine learning algorithm based on proposed PSO–NN model" @default.
- W4214485280 cites W1992674248 @default.
- W4214485280 cites W1996149408 @default.
- W4214485280 cites W2011141753 @default.
- W4214485280 cites W2024509774 @default.
- W4214485280 cites W2052596099 @default.
- W4214485280 cites W2055238193 @default.
- W4214485280 cites W2059378622 @default.
- W4214485280 cites W2060594283 @default.
- W4214485280 cites W2067056306 @default.
- W4214485280 cites W2086910055 @default.
- W4214485280 cites W2091248159 @default.
- W4214485280 cites W2127999757 @default.
- W4214485280 cites W2141733031 @default.
- W4214485280 cites W2144341005 @default.
- W4214485280 cites W2153500382 @default.
- W4214485280 cites W2216536395 @default.
- W4214485280 cites W2326758720 @default.
- W4214485280 cites W2513556098 @default.
- W4214485280 cites W2515261046 @default.
- W4214485280 cites W2562312418 @default.
- W4214485280 cites W2590355444 @default.
- W4214485280 cites W2766940166 @default.
- W4214485280 cites W2795307901 @default.
- W4214485280 cites W2891027816 @default.
- W4214485280 cites W2895297055 @default.
- W4214485280 cites W2909770023 @default.
- W4214485280 cites W2947207002 @default.
- W4214485280 cites W2949006411 @default.
- W4214485280 cites W2963148318 @default.
- W4214485280 cites W2996425496 @default.
- W4214485280 cites W2996713777 @default.
- W4214485280 cites W2999798305 @default.
- W4214485280 cites W2999986873 @default.
- W4214485280 cites W3024525656 @default.
- W4214485280 cites W3037774677 @default.
- W4214485280 cites W3082813113 @default.
- W4214485280 cites W3111485376 @default.
- W4214485280 cites W3134462632 @default.
- W4214485280 cites W3176783829 @default.
- W4214485280 cites W3183357086 @default.
- W4214485280 cites W3195309471 @default.
- W4214485280 cites W3205009150 @default.
- W4214485280 doi "https://doi.org/10.1016/j.fuel.2022.123644" @default.
- W4214485280 hasPublicationYear "2022" @default.
- W4214485280 type Work @default.
- W4214485280 citedByCount "21" @default.
- W4214485280 countsByYear W42144852802022 @default.
- W4214485280 countsByYear W42144852802023 @default.
- W4214485280 crossrefType "journal-article" @default.
- W4214485280 hasAuthorship W4214485280A5008976005 @default.
- W4214485280 hasAuthorship W4214485280A5064078067 @default.
- W4214485280 hasAuthorship W4214485280A5065058975 @default.
- W4214485280 hasAuthorship W4214485280A5066991699 @default.
- W4214485280 hasAuthorship W4214485280A5089769558 @default.
- W4214485280 hasConcept C105923489 @default.
- W4214485280 hasConcept C111368507 @default.
- W4214485280 hasConcept C11413529 @default.
- W4214485280 hasConcept C115540264 @default.
- W4214485280 hasConcept C119857082 @default.
- W4214485280 hasConcept C127313418 @default.
- W4214485280 hasConcept C127413603 @default.
- W4214485280 hasConcept C134121241 @default.
- W4214485280 hasConcept C154877778 @default.
- W4214485280 hasConcept C156383657 @default.
- W4214485280 hasConcept C159985019 @default.
- W4214485280 hasConcept C162324750 @default.
- W4214485280 hasConcept C178790620 @default.
- W4214485280 hasConcept C185592680 @default.
- W4214485280 hasConcept C186060115 @default.
- W4214485280 hasConcept C187320778 @default.
- W4214485280 hasConcept C192562407 @default.
- W4214485280 hasConcept C196832758 @default.
- W4214485280 hasConcept C206139338 @default.
- W4214485280 hasConcept C21880701 @default.
- W4214485280 hasConcept C24939127 @default.
- W4214485280 hasConcept C26771246 @default.
- W4214485280 hasConcept C2777303404 @default.
- W4214485280 hasConcept C2779611803 @default.
- W4214485280 hasConcept C39432304 @default.
- W4214485280 hasConcept C41008148 @default.
- W4214485280 hasConcept C50522688 @default.
- W4214485280 hasConcept C50644808 @default.
- W4214485280 hasConcept C528095902 @default.
- W4214485280 hasConcept C85617194 @default.
- W4214485280 hasConcept C86803240 @default.
- W4214485280 hasConceptScore W4214485280C105923489 @default.
- W4214485280 hasConceptScore W4214485280C111368507 @default.
- W4214485280 hasConceptScore W4214485280C11413529 @default.