Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214487445> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4214487445 abstract "Cluster expansion (CE) is a powerful theoretical tool to study the configuration-dependent properties of substitutionally disordered systems. Typically, a CE model is built by fitting a few tens or hundreds of target quantities calculated by first-principles approaches. To validate the reliability of the model, a convergence test of cross-validation (CV) score to the training set size is commonly conducted to verify the sufficiency of training data. However, such test only confirms the convergence of the predictive capability of the CE model within the training set and it is unknown whether the convergence of the CV score would lead to robust thermodynamic simulation results such as order-disorder phase transition temperature $T_{rm c}$. In this work, using carbon defective MoC$_{1-x}$ as a model system and aided by the machine-learning force field technique, a training data pool with about 13000 configurations has been efficiently obtained and used to generate different training sets of the same size randomly. By conducting parallel Monte Carlo simulations with the CE models trained with different randomly selected training set, the uncertainty in calculated $T_{rm c}$ can be evaluated at different training set size. It is found that the training set size that is sufficient for the CV score to converge still leads to a significant uncertainty in the predicted $T_{rm c}$, and that the latter can be considerably reduced by enlarging the training set to that of a few thousand configurations. This work highlights the importance of considering large training set for building the optimal CE model that can achieve robust statistical modeling results, and the facility provided by the machine-learning force field approach to efficiently produce adequate training data." @default.
- W4214487445 created "2022-03-02" @default.
- W4214487445 creator A5014591906 @default.
- W4214487445 creator A5029440749 @default.
- W4214487445 creator A5068870804 @default.
- W4214487445 creator A5080797827 @default.
- W4214487445 date "2022-02-28" @default.
- W4214487445 modified "2023-09-27" @default.
- W4214487445 title "Machine Learning Force Field Aided Cluster Expansion Approach to Configurationally Disordered Materials: Critical Assessment of Training Set Selection and Size Convergence" @default.
- W4214487445 doi "https://doi.org/10.26434/chemrxiv-2022-0kdtn" @default.
- W4214487445 hasPublicationYear "2022" @default.
- W4214487445 type Work @default.
- W4214487445 citedByCount "0" @default.
- W4214487445 crossrefType "posted-content" @default.
- W4214487445 hasAuthorship W4214487445A5014591906 @default.
- W4214487445 hasAuthorship W4214487445A5029440749 @default.
- W4214487445 hasAuthorship W4214487445A5068870804 @default.
- W4214487445 hasAuthorship W4214487445A5080797827 @default.
- W4214487445 hasBestOaLocation W42144874451 @default.
- W4214487445 hasConcept C105795698 @default.
- W4214487445 hasConcept C11413529 @default.
- W4214487445 hasConcept C119857082 @default.
- W4214487445 hasConcept C121332964 @default.
- W4214487445 hasConcept C153294291 @default.
- W4214487445 hasConcept C154945302 @default.
- W4214487445 hasConcept C162324750 @default.
- W4214487445 hasConcept C164866538 @default.
- W4214487445 hasConcept C169903167 @default.
- W4214487445 hasConcept C177264268 @default.
- W4214487445 hasConcept C18762648 @default.
- W4214487445 hasConcept C19499675 @default.
- W4214487445 hasConcept C199360897 @default.
- W4214487445 hasConcept C202444582 @default.
- W4214487445 hasConcept C2777211547 @default.
- W4214487445 hasConcept C2777303404 @default.
- W4214487445 hasConcept C33923547 @default.
- W4214487445 hasConcept C41008148 @default.
- W4214487445 hasConcept C50522688 @default.
- W4214487445 hasConcept C51632099 @default.
- W4214487445 hasConcept C58489278 @default.
- W4214487445 hasConcept C9652623 @default.
- W4214487445 hasConcept C97355855 @default.
- W4214487445 hasConceptScore W4214487445C105795698 @default.
- W4214487445 hasConceptScore W4214487445C11413529 @default.
- W4214487445 hasConceptScore W4214487445C119857082 @default.
- W4214487445 hasConceptScore W4214487445C121332964 @default.
- W4214487445 hasConceptScore W4214487445C153294291 @default.
- W4214487445 hasConceptScore W4214487445C154945302 @default.
- W4214487445 hasConceptScore W4214487445C162324750 @default.
- W4214487445 hasConceptScore W4214487445C164866538 @default.
- W4214487445 hasConceptScore W4214487445C169903167 @default.
- W4214487445 hasConceptScore W4214487445C177264268 @default.
- W4214487445 hasConceptScore W4214487445C18762648 @default.
- W4214487445 hasConceptScore W4214487445C19499675 @default.
- W4214487445 hasConceptScore W4214487445C199360897 @default.
- W4214487445 hasConceptScore W4214487445C202444582 @default.
- W4214487445 hasConceptScore W4214487445C2777211547 @default.
- W4214487445 hasConceptScore W4214487445C2777303404 @default.
- W4214487445 hasConceptScore W4214487445C33923547 @default.
- W4214487445 hasConceptScore W4214487445C41008148 @default.
- W4214487445 hasConceptScore W4214487445C50522688 @default.
- W4214487445 hasConceptScore W4214487445C51632099 @default.
- W4214487445 hasConceptScore W4214487445C58489278 @default.
- W4214487445 hasConceptScore W4214487445C9652623 @default.
- W4214487445 hasConceptScore W4214487445C97355855 @default.
- W4214487445 hasFunder F4320321001 @default.
- W4214487445 hasLocation W42144874451 @default.
- W4214487445 hasLocation W42144874452 @default.
- W4214487445 hasOpenAccess W4214487445 @default.
- W4214487445 hasPrimaryLocation W42144874451 @default.
- W4214487445 hasRelatedWork W1990237101 @default.
- W4214487445 hasRelatedWork W2006801911 @default.
- W4214487445 hasRelatedWork W2123376283 @default.
- W4214487445 hasRelatedWork W2350644419 @default.
- W4214487445 hasRelatedWork W2743606042 @default.
- W4214487445 hasRelatedWork W2792951589 @default.
- W4214487445 hasRelatedWork W3201070945 @default.
- W4214487445 hasRelatedWork W4210654698 @default.
- W4214487445 hasRelatedWork W4225124612 @default.
- W4214487445 hasRelatedWork W4280583453 @default.
- W4214487445 isParatext "false" @default.
- W4214487445 isRetracted "false" @default.
- W4214487445 workType "article" @default.