Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214522040> ?p ?o ?g. }
- W4214522040 endingPage "1378" @default.
- W4214522040 startingPage "1366" @default.
- W4214522040 abstract "Construction labour productivity (CLP) is affected by numerous variables made up of subjective and objective factors. Thus, CLP modelling and prediction are a complex task, leading to high computational cost and the risk of overfitting of data. This paper proposes a predictive model for CLP by integrating hybrid feature selection (HFS), as a combination of filter and wrapper methods, with principal component analysis (PCA). This developed HFS-PCA method reduces the dimensionality and complexity of CLP data and obtains better prediction performance by identifying the most predictive factors. Identified factors are utilized as inputs for various classification methods to predict CLP. Finally, prediction errors of the classification methods with and without using the proposed HFS-PCA method are compared, and the most accurate classification method is selected to develop the CLP predictive model. Experimental results show that using HFS-PCA for CLP prediction leads to better performances compared with past studies." @default.
- W4214522040 created "2022-03-02" @default.
- W4214522040 creator A5002081285 @default.
- W4214522040 creator A5009149528 @default.
- W4214522040 creator A5024369299 @default.
- W4214522040 creator A5069208971 @default.
- W4214522040 date "2022-08-01" @default.
- W4214522040 modified "2023-10-16" @default.
- W4214522040 title "Predictive model for construction labour productivity using hybrid feature selection and principal component analysis" @default.
- W4214522040 cites W1808644423 @default.
- W4214522040 cites W1936446011 @default.
- W4214522040 cites W1988414291 @default.
- W4214522040 cites W2000921630 @default.
- W4214522040 cites W2033985568 @default.
- W4214522040 cites W2083923231 @default.
- W4214522040 cites W2090758866 @default.
- W4214522040 cites W2107475165 @default.
- W4214522040 cites W2144411460 @default.
- W4214522040 cites W2171861768 @default.
- W4214522040 cites W2251516695 @default.
- W4214522040 cites W2267895059 @default.
- W4214522040 cites W2305049856 @default.
- W4214522040 cites W2547550709 @default.
- W4214522040 cites W2590632249 @default.
- W4214522040 cites W2590762173 @default.
- W4214522040 cites W2610317674 @default.
- W4214522040 cites W2762506473 @default.
- W4214522040 cites W2768499709 @default.
- W4214522040 cites W2793625853 @default.
- W4214522040 cites W2806931302 @default.
- W4214522040 cites W2808948574 @default.
- W4214522040 cites W2861659575 @default.
- W4214522040 cites W2882541123 @default.
- W4214522040 cites W2901492899 @default.
- W4214522040 cites W2907792871 @default.
- W4214522040 cites W2908163441 @default.
- W4214522040 cites W2913423770 @default.
- W4214522040 cites W2914375867 @default.
- W4214522040 cites W2936437926 @default.
- W4214522040 cites W2964210012 @default.
- W4214522040 cites W2990389633 @default.
- W4214522040 cites W3003348403 @default.
- W4214522040 cites W3032820428 @default.
- W4214522040 cites W3038148370 @default.
- W4214522040 cites W3081786538 @default.
- W4214522040 cites W3087706984 @default.
- W4214522040 cites W3095874217 @default.
- W4214522040 cites W3105090068 @default.
- W4214522040 cites W3105381642 @default.
- W4214522040 cites W3138122610 @default.
- W4214522040 cites W3182197800 @default.
- W4214522040 cites W4237433227 @default.
- W4214522040 cites W4248265853 @default.
- W4214522040 doi "https://doi.org/10.1139/cjce-2021-0248" @default.
- W4214522040 hasPublicationYear "2022" @default.
- W4214522040 type Work @default.
- W4214522040 citedByCount "1" @default.
- W4214522040 countsByYear W42145220402022 @default.
- W4214522040 crossrefType "journal-article" @default.
- W4214522040 hasAuthorship W4214522040A5002081285 @default.
- W4214522040 hasAuthorship W4214522040A5009149528 @default.
- W4214522040 hasAuthorship W4214522040A5024369299 @default.
- W4214522040 hasAuthorship W4214522040A5069208971 @default.
- W4214522040 hasConcept C111030470 @default.
- W4214522040 hasConcept C119857082 @default.
- W4214522040 hasConcept C121332964 @default.
- W4214522040 hasConcept C124101348 @default.
- W4214522040 hasConcept C138885662 @default.
- W4214522040 hasConcept C148483581 @default.
- W4214522040 hasConcept C153180895 @default.
- W4214522040 hasConcept C154945302 @default.
- W4214522040 hasConcept C168167062 @default.
- W4214522040 hasConcept C22019652 @default.
- W4214522040 hasConcept C27438332 @default.
- W4214522040 hasConcept C2776401178 @default.
- W4214522040 hasConcept C41008148 @default.
- W4214522040 hasConcept C41895202 @default.
- W4214522040 hasConcept C45804977 @default.
- W4214522040 hasConcept C50644808 @default.
- W4214522040 hasConcept C81917197 @default.
- W4214522040 hasConcept C97355855 @default.
- W4214522040 hasConceptScore W4214522040C111030470 @default.
- W4214522040 hasConceptScore W4214522040C119857082 @default.
- W4214522040 hasConceptScore W4214522040C121332964 @default.
- W4214522040 hasConceptScore W4214522040C124101348 @default.
- W4214522040 hasConceptScore W4214522040C138885662 @default.
- W4214522040 hasConceptScore W4214522040C148483581 @default.
- W4214522040 hasConceptScore W4214522040C153180895 @default.
- W4214522040 hasConceptScore W4214522040C154945302 @default.
- W4214522040 hasConceptScore W4214522040C168167062 @default.
- W4214522040 hasConceptScore W4214522040C22019652 @default.
- W4214522040 hasConceptScore W4214522040C27438332 @default.
- W4214522040 hasConceptScore W4214522040C2776401178 @default.
- W4214522040 hasConceptScore W4214522040C41008148 @default.
- W4214522040 hasConceptScore W4214522040C41895202 @default.
- W4214522040 hasConceptScore W4214522040C45804977 @default.
- W4214522040 hasConceptScore W4214522040C50644808 @default.
- W4214522040 hasConceptScore W4214522040C81917197 @default.