Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214522092> ?p ?o ?g. }
- W4214522092 endingPage "2126" @default.
- W4214522092 startingPage "2115" @default.
- W4214522092 abstract "The prognosis of borderline ovarian tumors (BOTs) has been the concern of clinicians and patients. It is urgent to develop a model to predict the survival of patients with BOTs.To construct a nomogram to predict the likelihood of overall survival (OS) in patients with BOTs.A total of 192 patients with histologically verified BOTs and 374 patients with epithelial ovarian cancer (EOC) were retrospectively investigated for clinical characteristics and survival outcomes. A 1:1 propensity score matching (PSM) analysis was performed to eliminate selection bias. Survival was analyzed by using the log-rank test and the restricted mean survival time (RMST). Next, univariate and multivariate Cox regression analyses were used to identify meaningful independent prognostic factors. In addition, a nomogram model was developed to predict the 1-, 3-, and 5-year overall survival of patients with BOTs. The predictive performance of the model was assessed by using the concordance index (C-index), calibration curves, and decision curve analysis (DCA).For clinical data, there was no significant difference in body mass index, preoperative CA199 concentration, or tumor localization between the BOTs group and EOC group. Women with BOTs were significantly younger than those with EOC. There was a significant difference in menopausal status, parity, preoperative serum CA125 concentration, Federation International of gynecology and obstetrics (FIGO) stage, and whether patients accepted postoperative adjuvant therapy between the BOT and EOC group. After PSM, patients with BOTs had better overall survival than patients with EOC (P value = 0.0067); more importantly, the 5-year RMST of BOTs was longer than that of EOC (P value = 0.0002, 95%CI -1.137 to -0.263). Multivariate Cox regression analysis showed that diagnosed age and surgical type were independent risk factors for BOT patient OS (P value < 0.05). A nomogram was developed based on diagnosed age, preoperative serum CA125 and CA199 Levels, surgical type, FIGO stage, and tumor size. Moreover, the c-index (0.959, 95% confidence interval 0.8708-1.0472), calibration plot of 1-, 3-, and 5-year OS, and decision curve analysis indicated the accurate predictive ability of this model.Patients with BOTs had a better prognosis than patients with EOC. The nomogram we constructed might be helpful for clinicians in personalized treatment planning and patient counseling." @default.
- W4214522092 created "2022-03-02" @default.
- W4214522092 creator A5066518590 @default.
- W4214522092 creator A5086664284 @default.
- W4214522092 date "2022-03-06" @default.
- W4214522092 modified "2023-09-26" @default.
- W4214522092 title "Develop a nomogram to predict overall survival of patients with borderline ovarian tumors" @default.
- W4214522092 cites W1966010019 @default.
- W4214522092 cites W1973441067 @default.
- W4214522092 cites W1975303054 @default.
- W4214522092 cites W1984450606 @default.
- W4214522092 cites W1990387115 @default.
- W4214522092 cites W1993286491 @default.
- W4214522092 cites W2001482522 @default.
- W4214522092 cites W2012229186 @default.
- W4214522092 cites W2028605700 @default.
- W4214522092 cites W2071007714 @default.
- W4214522092 cites W2093650348 @default.
- W4214522092 cites W2122871103 @default.
- W4214522092 cites W2136759782 @default.
- W4214522092 cites W2141627133 @default.
- W4214522092 cites W2153505392 @default.
- W4214522092 cites W2153780770 @default.
- W4214522092 cites W2159467753 @default.
- W4214522092 cites W2168124583 @default.
- W4214522092 cites W2180506284 @default.
- W4214522092 cites W2343517882 @default.
- W4214522092 cites W2550974557 @default.
- W4214522092 cites W2801050630 @default.
- W4214522092 cites W2917893407 @default.
- W4214522092 cites W2950565728 @default.
- W4214522092 cites W2958210097 @default.
- W4214522092 cites W2971625416 @default.
- W4214522092 cites W2972955630 @default.
- W4214522092 cites W2973458587 @default.
- W4214522092 cites W2981207443 @default.
- W4214522092 cites W3012396909 @default.
- W4214522092 cites W3036532615 @default.
- W4214522092 cites W3043910326 @default.
- W4214522092 cites W3049611287 @default.
- W4214522092 cites W3080549158 @default.
- W4214522092 cites W3082770433 @default.
- W4214522092 doi "https://doi.org/10.12998/wjcc.v10.i7.2115" @default.
- W4214522092 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35321187" @default.
- W4214522092 hasPublicationYear "2022" @default.
- W4214522092 type Work @default.
- W4214522092 citedByCount "0" @default.
- W4214522092 crossrefType "journal-article" @default.
- W4214522092 hasAuthorship W4214522092A5066518590 @default.
- W4214522092 hasAuthorship W4214522092A5086664284 @default.
- W4214522092 hasBestOaLocation W42145220921 @default.
- W4214522092 hasConcept C10515644 @default.
- W4214522092 hasConcept C105795698 @default.
- W4214522092 hasConcept C126322002 @default.
- W4214522092 hasConcept C143998085 @default.
- W4214522092 hasConcept C146357865 @default.
- W4214522092 hasConcept C151730666 @default.
- W4214522092 hasConcept C160798450 @default.
- W4214522092 hasConcept C161584116 @default.
- W4214522092 hasConcept C17923572 @default.
- W4214522092 hasConcept C199163554 @default.
- W4214522092 hasConcept C2780221984 @default.
- W4214522092 hasConcept C29456083 @default.
- W4214522092 hasConcept C33923547 @default.
- W4214522092 hasConcept C34626388 @default.
- W4214522092 hasConcept C38180746 @default.
- W4214522092 hasConcept C50382708 @default.
- W4214522092 hasConcept C71924100 @default.
- W4214522092 hasConcept C86803240 @default.
- W4214522092 hasConceptScore W4214522092C10515644 @default.
- W4214522092 hasConceptScore W4214522092C105795698 @default.
- W4214522092 hasConceptScore W4214522092C126322002 @default.
- W4214522092 hasConceptScore W4214522092C143998085 @default.
- W4214522092 hasConceptScore W4214522092C146357865 @default.
- W4214522092 hasConceptScore W4214522092C151730666 @default.
- W4214522092 hasConceptScore W4214522092C160798450 @default.
- W4214522092 hasConceptScore W4214522092C161584116 @default.
- W4214522092 hasConceptScore W4214522092C17923572 @default.
- W4214522092 hasConceptScore W4214522092C199163554 @default.
- W4214522092 hasConceptScore W4214522092C2780221984 @default.
- W4214522092 hasConceptScore W4214522092C29456083 @default.
- W4214522092 hasConceptScore W4214522092C33923547 @default.
- W4214522092 hasConceptScore W4214522092C34626388 @default.
- W4214522092 hasConceptScore W4214522092C38180746 @default.
- W4214522092 hasConceptScore W4214522092C50382708 @default.
- W4214522092 hasConceptScore W4214522092C71924100 @default.
- W4214522092 hasConceptScore W4214522092C86803240 @default.
- W4214522092 hasIssue "7" @default.
- W4214522092 hasLocation W42145220921 @default.
- W4214522092 hasLocation W42145220922 @default.
- W4214522092 hasLocation W42145220923 @default.
- W4214522092 hasOpenAccess W4214522092 @default.
- W4214522092 hasPrimaryLocation W42145220921 @default.
- W4214522092 hasRelatedWork W2013111243 @default.
- W4214522092 hasRelatedWork W2361144647 @default.
- W4214522092 hasRelatedWork W3095136102 @default.
- W4214522092 hasRelatedWork W3212891608 @default.
- W4214522092 hasRelatedWork W4206088420 @default.