Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214525574> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W4214525574 abstract "Under the background of massive malware, traditional methods of malware analysis can no longer efficiently meet the task of malware analysis. The development of machine learning technologies has effectively solved this problem. In recent years, machine learning and deep learning technologies have been gradually applied to the detection of malicious software. Machine learning-based malware classification has become a research hotspot in the field of malware detection. As an overview of machine learning-based detection and classification of malware, we analyze and summarize the system framework of malware detection and classification, introduce the basic categories of malware features and main classifiers of malware detection and classification, and propose a basic framework and technical architecture of feature processing technologies. Then, we summarize some issues and challenges faced by the current malware detection-related work. Finally, we discuss some potential research directions of machine learning-based detection and classification of malware from three aspects." @default.
- W4214525574 created "2022-03-02" @default.
- W4214525574 creator A5023739513 @default.
- W4214525574 creator A5034461623 @default.
- W4214525574 creator A5038979617 @default.
- W4214525574 creator A5083733506 @default.
- W4214525574 date "2021-09-01" @default.
- W4214525574 modified "2023-10-02" @default.
- W4214525574 title "A Survey on Machine Learning-based Detection and Classification Technology of Malware" @default.
- W4214525574 cites W1482612322 @default.
- W4214525574 cites W1489257734 @default.
- W4214525574 cites W1573286687 @default.
- W4214525574 cites W1653273292 @default.
- W4214525574 cites W1760401052 @default.
- W4214525574 cites W179875071 @default.
- W4214525574 cites W1893133781 @default.
- W4214525574 cites W192227941 @default.
- W4214525574 cites W1968527224 @default.
- W4214525574 cites W1984959655 @default.
- W4214525574 cites W1987214724 @default.
- W4214525574 cites W2003094813 @default.
- W4214525574 cites W2010065958 @default.
- W4214525574 cites W2066220442 @default.
- W4214525574 cites W2083183119 @default.
- W4214525574 cites W2084979543 @default.
- W4214525574 cites W2091812280 @default.
- W4214525574 cites W2103464385 @default.
- W4214525574 cites W2108104525 @default.
- W4214525574 cites W2110889728 @default.
- W4214525574 cites W2112796928 @default.
- W4214525574 cites W2115771393 @default.
- W4214525574 cites W2125283600 @default.
- W4214525574 cites W2132874238 @default.
- W4214525574 cites W2144112223 @default.
- W4214525574 cites W2155623386 @default.
- W4214525574 cites W2163931946 @default.
- W4214525574 cites W2164163973 @default.
- W4214525574 cites W2170770919 @default.
- W4214525574 cites W2237959143 @default.
- W4214525574 cites W2384735743 @default.
- W4214525574 cites W2402268235 @default.
- W4214525574 cites W2508015754 @default.
- W4214525574 cites W2557513839 @default.
- W4214525574 cites W2732916693 @default.
- W4214525574 cites W2734713605 @default.
- W4214525574 cites W2775173651 @default.
- W4214525574 cites W2795063185 @default.
- W4214525574 cites W2796394805 @default.
- W4214525574 cites W2889682758 @default.
- W4214525574 cites W2911964244 @default.
- W4214525574 cites W2944146009 @default.
- W4214525574 cites W2955992195 @default.
- W4214525574 cites W2963608065 @default.
- W4214525574 cites W2963626623 @default.
- W4214525574 cites W2969904462 @default.
- W4214525574 cites W2982645003 @default.
- W4214525574 cites W3007070494 @default.
- W4214525574 cites W3013960684 @default.
- W4214525574 cites W3032738159 @default.
- W4214525574 cites W4239510810 @default.
- W4214525574 doi "https://doi.org/10.1109/cisai54367.2021.00158" @default.
- W4214525574 hasPublicationYear "2021" @default.
- W4214525574 type Work @default.
- W4214525574 citedByCount "2" @default.
- W4214525574 countsByYear W42145255742023 @default.
- W4214525574 crossrefType "proceedings-article" @default.
- W4214525574 hasAuthorship W4214525574A5023739513 @default.
- W4214525574 hasAuthorship W4214525574A5034461623 @default.
- W4214525574 hasAuthorship W4214525574A5038979617 @default.
- W4214525574 hasAuthorship W4214525574A5083733506 @default.
- W4214525574 hasConcept C119857082 @default.
- W4214525574 hasConcept C154945302 @default.
- W4214525574 hasConcept C38652104 @default.
- W4214525574 hasConcept C41008148 @default.
- W4214525574 hasConcept C541664917 @default.
- W4214525574 hasConceptScore W4214525574C119857082 @default.
- W4214525574 hasConceptScore W4214525574C154945302 @default.
- W4214525574 hasConceptScore W4214525574C38652104 @default.
- W4214525574 hasConceptScore W4214525574C41008148 @default.
- W4214525574 hasConceptScore W4214525574C541664917 @default.
- W4214525574 hasLocation W42145255741 @default.
- W4214525574 hasOpenAccess W4214525574 @default.
- W4214525574 hasPrimaryLocation W42145255741 @default.
- W4214525574 hasRelatedWork W1827256152 @default.
- W4214525574 hasRelatedWork W2961085424 @default.
- W4214525574 hasRelatedWork W2968586400 @default.
- W4214525574 hasRelatedWork W2980605179 @default.
- W4214525574 hasRelatedWork W4205985752 @default.
- W4214525574 hasRelatedWork W4286629047 @default.
- W4214525574 hasRelatedWork W4306321456 @default.
- W4214525574 hasRelatedWork W4306674287 @default.
- W4214525574 hasRelatedWork W4313315004 @default.
- W4214525574 hasRelatedWork W4224009465 @default.
- W4214525574 isParatext "false" @default.
- W4214525574 isRetracted "false" @default.
- W4214525574 workType "article" @default.