Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214542829> ?p ?o ?g. }
- W4214542829 abstract "To exactly classify sentiments of microblog reviews with emojis in microblog social networks, this paper first proposes an emoji vectorisation method to achieve emoji vectors. Then, an emoji-text integrated bidirectional LSTM (ET-BiLSTM) model for sentiment analysis is proposed. In this model, review text-based sentence representations are extracted by a bidirectional LSTM network. Emoji-based auxiliary representations are obtained by a new attention mechanism. The two representations are further integrated into final review representation vectors. Finally, experimental results indicate that the proposed ET-BiLSTM model improves the performance of sentiment classification evaluated by macro-P, macro-R and macro-F1 scores in microblog social networks." @default.
- W4214542829 created "2022-03-02" @default.
- W4214542829 creator A5005295880 @default.
- W4214542829 creator A5034413953 @default.
- W4214542829 creator A5052719536 @default.
- W4214542829 creator A5063274163 @default.
- W4214542829 creator A5085147583 @default.
- W4214542829 creator A5087562798 @default.
- W4214542829 date "2022-02-27" @default.
- W4214542829 modified "2023-10-14" @default.
- W4214542829 title "A Novel Deep Learning-based Sentiment Analysis Method Enhanced with Emojis in Microblog Social Networks" @default.
- W4214542829 cites W1832693441 @default.
- W4214542829 cites W187383899 @default.
- W4214542829 cites W2001616361 @default.
- W4214542829 cites W2012070465 @default.
- W4214542829 cites W2034090215 @default.
- W4214542829 cites W2136930489 @default.
- W4214542829 cites W2166706824 @default.
- W4214542829 cites W2197429038 @default.
- W4214542829 cites W2313798630 @default.
- W4214542829 cites W2408821365 @default.
- W4214542829 cites W2518630504 @default.
- W4214542829 cites W2519353570 @default.
- W4214542829 cites W2526960150 @default.
- W4214542829 cites W2535739320 @default.
- W4214542829 cites W2600986976 @default.
- W4214542829 cites W2739483315 @default.
- W4214542829 cites W2770617756 @default.
- W4214542829 cites W2793625747 @default.
- W4214542829 cites W2809807853 @default.
- W4214542829 cites W2883853499 @default.
- W4214542829 cites W2888975113 @default.
- W4214542829 cites W2889762799 @default.
- W4214542829 cites W2891430112 @default.
- W4214542829 cites W2894196255 @default.
- W4214542829 cites W2899329739 @default.
- W4214542829 cites W2899455119 @default.
- W4214542829 cites W2902088568 @default.
- W4214542829 cites W2907767058 @default.
- W4214542829 cites W2910735176 @default.
- W4214542829 cites W2920873208 @default.
- W4214542829 cites W2921492173 @default.
- W4214542829 cites W2944443295 @default.
- W4214542829 cites W2963626623 @default.
- W4214542829 cites W2971299489 @default.
- W4214542829 cites W2980428304 @default.
- W4214542829 cites W2980680735 @default.
- W4214542829 cites W2984279154 @default.
- W4214542829 cites W2989376749 @default.
- W4214542829 cites W3003048870 @default.
- W4214542829 cites W3005503605 @default.
- W4214542829 cites W3017952061 @default.
- W4214542829 cites W3020589325 @default.
- W4214542829 cites W3032928500 @default.
- W4214542829 cites W3033350318 @default.
- W4214542829 cites W3081987387 @default.
- W4214542829 cites W3091326954 @default.
- W4214542829 cites W3097775622 @default.
- W4214542829 cites W3113790166 @default.
- W4214542829 cites W3113861792 @default.
- W4214542829 cites W3118321697 @default.
- W4214542829 cites W3121481086 @default.
- W4214542829 cites W3129702347 @default.
- W4214542829 cites W3135620065 @default.
- W4214542829 cites W3135750799 @default.
- W4214542829 cites W3155500649 @default.
- W4214542829 cites W3160518394 @default.
- W4214542829 cites W3160733676 @default.
- W4214542829 cites W3172697435 @default.
- W4214542829 cites W3174555685 @default.
- W4214542829 cites W3176189029 @default.
- W4214542829 cites W3194774163 @default.
- W4214542829 cites W66373487 @default.
- W4214542829 doi "https://doi.org/10.1080/17517575.2022.2037160" @default.
- W4214542829 hasPublicationYear "2022" @default.
- W4214542829 type Work @default.
- W4214542829 citedByCount "9" @default.
- W4214542829 countsByYear W42145428292022 @default.
- W4214542829 countsByYear W42145428292023 @default.
- W4214542829 crossrefType "journal-article" @default.
- W4214542829 hasAuthorship W4214542829A5005295880 @default.
- W4214542829 hasAuthorship W4214542829A5034413953 @default.
- W4214542829 hasAuthorship W4214542829A5052719536 @default.
- W4214542829 hasAuthorship W4214542829A5063274163 @default.
- W4214542829 hasAuthorship W4214542829A5085147583 @default.
- W4214542829 hasAuthorship W4214542829A5087562798 @default.
- W4214542829 hasConcept C119857082 @default.
- W4214542829 hasConcept C136764020 @default.
- W4214542829 hasConcept C143275388 @default.
- W4214542829 hasConcept C154945302 @default.
- W4214542829 hasConcept C166955791 @default.
- W4214542829 hasConcept C17744445 @default.
- W4214542829 hasConcept C199360897 @default.
- W4214542829 hasConcept C199539241 @default.
- W4214542829 hasConcept C204321447 @default.
- W4214542829 hasConcept C2776359362 @default.
- W4214542829 hasConcept C2777530160 @default.
- W4214542829 hasConcept C2779247141 @default.
- W4214542829 hasConcept C41008148 @default.
- W4214542829 hasConcept C4727928 @default.