Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214560198> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4214560198 endingPage "11" @default.
- W4214560198 startingPage "1" @default.
- W4214560198 abstract "Wastewater is created by pharma firms and has become a huge worry for the ecosystem. There is a significant amount of toxins that are being dropped continuously from numerous pharmaceutical companies that causes serious damages to the environment and public health because of its comprising high organics as well as inorganic loadings and thus requirements appropriate treatment before final disposal to the ecosystem. Goal of this approach is to treat the wastewater treatment model with industrial data. Algorithms of the artificial neural network (ANN) were employed progressively to predict parameters for wastewater plants. This provision assists users to take remedial measures and function the process by the standards. It is proven as beneficial technology because of its complicated mechanism, dynamic and inconsistent changes in aspects, to overcome some of the limitations of common mathematical models for the wastewater treatment plant. The target is to achieve better prediction accuracy in wastewater treatment model. In this paper, ANN approaches are relevant to the prediction of input and effluent chemical oxygen demand (COD) for effluent treatment procedures. Artificial neural networks (ANNs) offer accurate technique modeling for complex systems using an artificial intelligence technique. Three distinct types of back-propagation ANN were devised to avoid the concentration of wastewater treatment facilities in the concentration of COD, suspended particles, and mixed liquid solids in an epidermal water treatment tank (MLSS). To anticipate COD levels in influential and effluent areas, two ANN-based techniques have been presented. The proper structure for the neural network models was identified via a variety of training and model testing methods. An efficient and robust forecasting tool has been created for the ANN model." @default.
- W4214560198 created "2022-03-02" @default.
- W4214560198 creator A5037797184 @default.
- W4214560198 creator A5040002478 @default.
- W4214560198 creator A5040631120 @default.
- W4214560198 creator A5045211962 @default.
- W4214560198 creator A5076524025 @default.
- W4214560198 creator A5078391471 @default.
- W4214560198 creator A5080234989 @default.
- W4214560198 creator A5084235032 @default.
- W4214560198 creator A5084632396 @default.
- W4214560198 date "2022-02-25" @default.
- W4214560198 modified "2023-09-26" @default.
- W4214560198 title "IOT Based Smart Wastewater Treatment Model for Industry 4.0 Using Artificial Intelligence" @default.
- W4214560198 cites W1976021549 @default.
- W4214560198 cites W1977360517 @default.
- W4214560198 cites W2006743190 @default.
- W4214560198 cites W2068109735 @default.
- W4214560198 cites W2248725568 @default.
- W4214560198 cites W2512261160 @default.
- W4214560198 cites W2515031866 @default.
- W4214560198 cites W2558615693 @default.
- W4214560198 cites W2565300772 @default.
- W4214560198 cites W2583151040 @default.
- W4214560198 cites W2594977017 @default.
- W4214560198 cites W2766238041 @default.
- W4214560198 cites W2990912063 @default.
- W4214560198 cites W3003973890 @default.
- W4214560198 cites W3076699618 @default.
- W4214560198 cites W3113034841 @default.
- W4214560198 cites W3124016887 @default.
- W4214560198 cites W3161516783 @default.
- W4214560198 cites W4236518471 @default.
- W4214560198 doi "https://doi.org/10.1155/2022/5134013" @default.
- W4214560198 hasPublicationYear "2022" @default.
- W4214560198 type Work @default.
- W4214560198 citedByCount "3" @default.
- W4214560198 countsByYear W42145601982022 @default.
- W4214560198 countsByYear W42145601982023 @default.
- W4214560198 crossrefType "journal-article" @default.
- W4214560198 hasAuthorship W4214560198A5037797184 @default.
- W4214560198 hasAuthorship W4214560198A5040002478 @default.
- W4214560198 hasAuthorship W4214560198A5040631120 @default.
- W4214560198 hasAuthorship W4214560198A5045211962 @default.
- W4214560198 hasAuthorship W4214560198A5076524025 @default.
- W4214560198 hasAuthorship W4214560198A5078391471 @default.
- W4214560198 hasAuthorship W4214560198A5080234989 @default.
- W4214560198 hasAuthorship W4214560198A5084235032 @default.
- W4214560198 hasAuthorship W4214560198A5084632396 @default.
- W4214560198 hasBestOaLocation W42145601981 @default.
- W4214560198 hasConcept C127413603 @default.
- W4214560198 hasConcept C147455438 @default.
- W4214560198 hasConcept C154945302 @default.
- W4214560198 hasConcept C183696295 @default.
- W4214560198 hasConcept C188287460 @default.
- W4214560198 hasConcept C21880701 @default.
- W4214560198 hasConcept C39432304 @default.
- W4214560198 hasConcept C41008148 @default.
- W4214560198 hasConcept C50644808 @default.
- W4214560198 hasConcept C548081761 @default.
- W4214560198 hasConcept C57442070 @default.
- W4214560198 hasConcept C87717796 @default.
- W4214560198 hasConcept C94061648 @default.
- W4214560198 hasConceptScore W4214560198C127413603 @default.
- W4214560198 hasConceptScore W4214560198C147455438 @default.
- W4214560198 hasConceptScore W4214560198C154945302 @default.
- W4214560198 hasConceptScore W4214560198C183696295 @default.
- W4214560198 hasConceptScore W4214560198C188287460 @default.
- W4214560198 hasConceptScore W4214560198C21880701 @default.
- W4214560198 hasConceptScore W4214560198C39432304 @default.
- W4214560198 hasConceptScore W4214560198C41008148 @default.
- W4214560198 hasConceptScore W4214560198C50644808 @default.
- W4214560198 hasConceptScore W4214560198C548081761 @default.
- W4214560198 hasConceptScore W4214560198C57442070 @default.
- W4214560198 hasConceptScore W4214560198C87717796 @default.
- W4214560198 hasConceptScore W4214560198C94061648 @default.
- W4214560198 hasFunder F4320324433 @default.
- W4214560198 hasLocation W42145601981 @default.
- W4214560198 hasLocation W42145601982 @default.
- W4214560198 hasOpenAccess W4214560198 @default.
- W4214560198 hasPrimaryLocation W42145601981 @default.
- W4214560198 hasRelatedWork W2001642177 @default.
- W4214560198 hasRelatedWork W2032616467 @default.
- W4214560198 hasRelatedWork W2947068972 @default.
- W4214560198 hasRelatedWork W2963731427 @default.
- W4214560198 hasRelatedWork W3043136448 @default.
- W4214560198 hasRelatedWork W3188680237 @default.
- W4214560198 hasRelatedWork W4324012724 @default.
- W4214560198 hasRelatedWork W4383460790 @default.
- W4214560198 hasRelatedWork W2579307809 @default.
- W4214560198 hasRelatedWork W2741138467 @default.
- W4214560198 hasVolume "2022" @default.
- W4214560198 isParatext "false" @default.
- W4214560198 isRetracted "false" @default.
- W4214560198 workType "article" @default.