Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214562496> ?p ?o ?g. }
- W4214562496 abstract "Microseismic source localization is important for inferring the dynamic status of the subsurface stress field during hydraulic fracturing. Traditional deterministic methods for 3D microseismic source localization require either ray tracing or full waveform modeling, thus are computationally expensive. We propose a very efficient (e.g., within 1 s) microseismic source localization method based on machine learning. First, three-dimensional (3D) ray tracing is performed with hypothetical event locations and realistic acquisition geometry to calculate the theoretical travel-times. The theoretical travel-time differences and the spatial locations of the stations are treated as the input features of the training data set, and the corresponding source locations are used as the labels. The manually or automatically picked arrival time differences between different stations and a reference station after a microseismic event and the actual station locations are fed into the well-trained model for a fast and accurate location prediction. The proposed method is efficient enough to be widely applied for the real-time monitoring of hydraulic fracturing. The machine learning model is analogous to 3D grid search but performs 3D ray tracings before the actual localization, and needs to be retrained when applied to a new study area. We use several synthetic tests and a real data example from the Weiyuan hydraulic fracturing experiment in Sichuan, China, to demonstrate the effectiveness of the proposed method. The application of the proposed method to earthquake localization is also demonstrated to be straightforward." @default.
- W4214562496 created "2022-03-02" @default.
- W4214562496 creator A5005237932 @default.
- W4214562496 creator A5038435682 @default.
- W4214562496 creator A5059397010 @default.
- W4214562496 creator A5074223914 @default.
- W4214562496 creator A5079052972 @default.
- W4214562496 date "2022-03-01" @default.
- W4214562496 modified "2023-09-27" @default.
- W4214562496 title "3D Microseismic Monitoring Using Machine Learning" @default.
- W4214562496 cites W1504877043 @default.
- W4214562496 cites W1563678390 @default.
- W4214562496 cites W1982714481 @default.
- W4214562496 cites W1997708567 @default.
- W4214562496 cites W1998271240 @default.
- W4214562496 cites W2026929318 @default.
- W4214562496 cites W2055798239 @default.
- W4214562496 cites W2058189808 @default.
- W4214562496 cites W2092460788 @default.
- W4214562496 cites W2096967722 @default.
- W4214562496 cites W2099857446 @default.
- W4214562496 cites W2106148868 @default.
- W4214562496 cites W2109401225 @default.
- W4214562496 cites W2121620792 @default.
- W4214562496 cites W2128869188 @default.
- W4214562496 cites W2137972163 @default.
- W4214562496 cites W2162602080 @default.
- W4214562496 cites W2170476175 @default.
- W4214562496 cites W2175594671 @default.
- W4214562496 cites W2209771703 @default.
- W4214562496 cites W2217998095 @default.
- W4214562496 cites W2280554568 @default.
- W4214562496 cites W2336491331 @default.
- W4214562496 cites W2404117291 @default.
- W4214562496 cites W2410410974 @default.
- W4214562496 cites W2412205031 @default.
- W4214562496 cites W2518277087 @default.
- W4214562496 cites W2565866683 @default.
- W4214562496 cites W2596106595 @default.
- W4214562496 cites W2757073244 @default.
- W4214562496 cites W2762410434 @default.
- W4214562496 cites W2770601028 @default.
- W4214562496 cites W2772775571 @default.
- W4214562496 cites W2789793747 @default.
- W4214562496 cites W2888525203 @default.
- W4214562496 cites W2889230839 @default.
- W4214562496 cites W2891778632 @default.
- W4214562496 cites W2911316031 @default.
- W4214562496 cites W2911964244 @default.
- W4214562496 cites W2950752056 @default.
- W4214562496 cites W2955450443 @default.
- W4214562496 cites W2960963180 @default.
- W4214562496 cites W2980304674 @default.
- W4214562496 cites W3034950392 @default.
- W4214562496 cites W3048385479 @default.
- W4214562496 cites W3082436677 @default.
- W4214562496 cites W3090377106 @default.
- W4214562496 cites W3133530565 @default.
- W4214562496 cites W3155972252 @default.
- W4214562496 cites W4244785404 @default.
- W4214562496 doi "https://doi.org/10.1029/2021jb023842" @default.
- W4214562496 hasPublicationYear "2022" @default.
- W4214562496 type Work @default.
- W4214562496 citedByCount "7" @default.
- W4214562496 countsByYear W42145624962022 @default.
- W4214562496 countsByYear W42145624962023 @default.
- W4214562496 crossrefType "journal-article" @default.
- W4214562496 hasAuthorship W4214562496A5005237932 @default.
- W4214562496 hasAuthorship W4214562496A5038435682 @default.
- W4214562496 hasAuthorship W4214562496A5059397010 @default.
- W4214562496 hasAuthorship W4214562496A5074223914 @default.
- W4214562496 hasAuthorship W4214562496A5079052972 @default.
- W4214562496 hasConcept C111919701 @default.
- W4214562496 hasConcept C119857082 @default.
- W4214562496 hasConcept C121332964 @default.
- W4214562496 hasConcept C124101348 @default.
- W4214562496 hasConcept C127313418 @default.
- W4214562496 hasConcept C13280743 @default.
- W4214562496 hasConcept C138673069 @default.
- W4214562496 hasConcept C153180895 @default.
- W4214562496 hasConcept C154945302 @default.
- W4214562496 hasConcept C165205528 @default.
- W4214562496 hasConcept C177264268 @default.
- W4214562496 hasConcept C187691185 @default.
- W4214562496 hasConcept C197424946 @default.
- W4214562496 hasConcept C199360897 @default.
- W4214562496 hasConcept C2779096232 @default.
- W4214562496 hasConcept C2779662365 @default.
- W4214562496 hasConcept C41008148 @default.
- W4214562496 hasConcept C554190296 @default.
- W4214562496 hasConcept C62520636 @default.
- W4214562496 hasConcept C7266685 @default.
- W4214562496 hasConcept C76155785 @default.
- W4214562496 hasConcept C78762247 @default.
- W4214562496 hasConceptScore W4214562496C111919701 @default.
- W4214562496 hasConceptScore W4214562496C119857082 @default.
- W4214562496 hasConceptScore W4214562496C121332964 @default.
- W4214562496 hasConceptScore W4214562496C124101348 @default.
- W4214562496 hasConceptScore W4214562496C127313418 @default.
- W4214562496 hasConceptScore W4214562496C13280743 @default.