Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214588045> ?p ?o ?g. }
- W4214588045 endingPage "9172" @default.
- W4214588045 startingPage "9151" @default.
- W4214588045 abstract "Abstract. Emissions of aviation include CO2, H2O, NOx, sulfur oxides, and soot. Many studies have investigated the annual mean climate impact of aviation emissions. While CO2 has a long atmospheric residence time and is almost uniformly distributed in the atmosphere, non-CO2 gases and particles and their products have short atmospheric residence times and are heterogeneously distributed. The climate impact of non-CO2 aviation emissions is known to vary with different meteorological background situations. The aim of this study is to systematically investigate the influence of characteristic weather situations on aviation climate effects over the North Atlantic region, to identify the most sensitive areas, and to potentially detect systematic weather-related similarities. If aircraft were re-routed to avoid climate-sensitive regions, the overall aviation climate impact might be reduced. Hence, the sensitivity of the atmosphere to local emissions provides a basis for the assessment of weather-related, climate-optimized flight trajectory planning. To determine the climate change contribution of an individual emission as a function of location, time, and weather situation, the radiative impact of local emissions of NOx and H2O to changes in O3, CH4, H2O and contrail cirrus was computed by means of the ECHAM5/MESSy Atmospheric Chemistry model. From this, 4-dimensional climate change functions (CCFs) were derived. Typical weather situations in the North Atlantic region were considered for winter and summer. Weather-related differences in O3, CH4, H2O, and contrail cirrus CCFs were investigated. The following characteristics were identified: enhanced climate impact of contrail cirrus was detected for emissions in areas with large-scale lifting, whereas low climate impact of contrail cirrus was found in the area of the jet stream. Northwards of 60∘ N, contrails usually cause climate warming in winter, independent of the weather situation. NOx emissions cause a high positive climate impact if released in the area of the jet stream or in high-pressure ridges, which induces a south- and downward transport of the emitted species, whereas NOx emissions at, or transported towards, high latitudes cause low or even negative climate impact. Independent of the weather situation, total NOx effects show a minimum at ∼250 hPa, increasing towards higher and lower altitudes, with generally higher positive impact in summer than in winter. H2O emissions induce a high climate impact when released in regions with lower tropopause height, whereas low climate impact occurs for emissions in areas with higher tropopause height. H2O CCFs generally increase with height and are larger in winter than in summer. The CCFs of all individual species can be combined, facilitating the assessment of total climate impact of aircraft trajectories considering CO2 and spatially and temporally varying non-CO2 effects. Furthermore, they allow for the optimization of aircraft trajectories with reduced overall climate impact. This also facilitates a fair evaluation of trade-offs between individual species. In most regions, NOx and contrail cirrus dominate the sensitivity to local aviation emissions. The findings of this study recommend considering weather-related differences for flight trajectory optimization in favour of reducing total climate impact." @default.
- W4214588045 created "2022-03-02" @default.
- W4214588045 creator A5000357324 @default.
- W4214588045 creator A5003506056 @default.
- W4214588045 creator A5018243177 @default.
- W4214588045 creator A5025196103 @default.
- W4214588045 creator A5040485527 @default.
- W4214588045 creator A5074759084 @default.
- W4214588045 creator A5085435298 @default.
- W4214588045 creator A5090309042 @default.
- W4214588045 date "2021-06-16" @default.
- W4214588045 modified "2023-10-16" @default.
- W4214588045 title "Influence of weather situation on non-CO<sub>2</sub> aviation climate effects: the REACT4C climate change functions" @default.
- W4214588045 cites W1489903306 @default.
- W4214588045 cites W1586138872 @default.
- W4214588045 cites W1690787865 @default.
- W4214588045 cites W175764971 @default.
- W4214588045 cites W1798891152 @default.
- W4214588045 cites W1964533533 @default.
- W4214588045 cites W1970066728 @default.
- W4214588045 cites W1970971028 @default.
- W4214588045 cites W1972518787 @default.
- W4214588045 cites W1973377389 @default.
- W4214588045 cites W1980740941 @default.
- W4214588045 cites W1998587025 @default.
- W4214588045 cites W2002930688 @default.
- W4214588045 cites W2013667850 @default.
- W4214588045 cites W2013965950 @default.
- W4214588045 cites W2015298455 @default.
- W4214588045 cites W2042290651 @default.
- W4214588045 cites W2042694696 @default.
- W4214588045 cites W2042952816 @default.
- W4214588045 cites W2059790653 @default.
- W4214588045 cites W2062529050 @default.
- W4214588045 cites W2068602928 @default.
- W4214588045 cites W2074647001 @default.
- W4214588045 cites W2097953657 @default.
- W4214588045 cites W2098489838 @default.
- W4214588045 cites W2099137012 @default.
- W4214588045 cites W2100650053 @default.
- W4214588045 cites W2103490819 @default.
- W4214588045 cites W2104357487 @default.
- W4214588045 cites W2104459003 @default.
- W4214588045 cites W2112334337 @default.
- W4214588045 cites W2114535018 @default.
- W4214588045 cites W2118255356 @default.
- W4214588045 cites W2120089986 @default.
- W4214588045 cites W2121745948 @default.
- W4214588045 cites W2138574429 @default.
- W4214588045 cites W2142838327 @default.
- W4214588045 cites W2154401756 @default.
- W4214588045 cites W2155013315 @default.
- W4214588045 cites W2155889765 @default.
- W4214588045 cites W2157539770 @default.
- W4214588045 cites W2158853389 @default.
- W4214588045 cites W2160324942 @default.
- W4214588045 cites W2160509414 @default.
- W4214588045 cites W2164917342 @default.
- W4214588045 cites W2169419178 @default.
- W4214588045 cites W2171606618 @default.
- W4214588045 cites W2281081416 @default.
- W4214588045 cites W2334007341 @default.
- W4214588045 cites W2413640849 @default.
- W4214588045 cites W2568888648 @default.
- W4214588045 cites W2586065957 @default.
- W4214588045 cites W2736339765 @default.
- W4214588045 cites W2737259124 @default.
- W4214588045 cites W2741765237 @default.
- W4214588045 cites W2789898598 @default.
- W4214588045 cites W2895524180 @default.
- W4214588045 cites W2906034511 @default.
- W4214588045 cites W2910668766 @default.
- W4214588045 cites W3004248695 @default.
- W4214588045 cites W3026582775 @default.
- W4214588045 cites W3081879483 @default.
- W4214588045 cites W3092174044 @default.
- W4214588045 cites W3093432062 @default.
- W4214588045 cites W3097040493 @default.
- W4214588045 cites W3127539055 @default.
- W4214588045 cites W3130151345 @default.
- W4214588045 cites W4241723964 @default.
- W4214588045 cites W4298145680 @default.
- W4214588045 doi "https://doi.org/10.5194/acp-21-9151-2021" @default.
- W4214588045 hasPublicationYear "2021" @default.
- W4214588045 type Work @default.
- W4214588045 citedByCount "10" @default.
- W4214588045 countsByYear W42145880452021 @default.
- W4214588045 countsByYear W42145880452022 @default.
- W4214588045 countsByYear W42145880452023 @default.
- W4214588045 crossrefType "journal-article" @default.
- W4214588045 hasAuthorship W4214588045A5000357324 @default.
- W4214588045 hasAuthorship W4214588045A5003506056 @default.
- W4214588045 hasAuthorship W4214588045A5018243177 @default.
- W4214588045 hasAuthorship W4214588045A5025196103 @default.
- W4214588045 hasAuthorship W4214588045A5040485527 @default.
- W4214588045 hasAuthorship W4214588045A5074759084 @default.
- W4214588045 hasAuthorship W4214588045A5085435298 @default.
- W4214588045 hasAuthorship W4214588045A5090309042 @default.