Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214602502> ?p ?o ?g. }
- W4214602502 endingPage "763" @default.
- W4214602502 startingPage "763" @default.
- W4214602502 abstract "Gaps often occur in eddy covariance flux measurements, leading to data loss and necessitating accurate gap-filling. Furthermore, gaps in evapotranspiration (ET) measurements of annual field crops are particularly challenging to fill because crops undergo rapid change over a short season. In this study, an innovative deep learning (DL) gap-filling method was tested on a database comprising six datasets from different crops (cotton, tomato, and wheat). For various gap scenarios, the performance of the method was compared with the common gap-filling technique, marginal distribution sampling (MDS), which is based on lookup tables. Furthermore, a predictor importance analysis was performed to evaluate the importance of the different meteorological inputs in estimating ET. On the half-hourly time scale, the deep learning method showed a significant 13.5% decrease in nRMSE (normalized root mean square error) throughout all datasets and gap durations. A substantially smaller standard deviation of mean nRMSE, compared with marginal distribution sampling, was also observed. On the whole-gap time scale (half a day to six days), average nMBE (normalized mean bias error) was similar to that of MDS, whereas standard deviation was improved. Using only air temperature and relative humidity as input variables provided an RMSE that was significantly smaller than that resulting from the MDS method. These results suggest that the deep learning method developed here is reliable and more consistent than the standard gap-filling method and thereby demonstrates the potential of advanced deep learning techniques for improving dynamic time series modeling." @default.
- W4214602502 created "2022-03-02" @default.
- W4214602502 creator A5045309524 @default.
- W4214602502 creator A5049513923 @default.
- W4214602502 creator A5064090994 @default.
- W4214602502 creator A5065909484 @default.
- W4214602502 creator A5082817470 @default.
- W4214602502 creator A5090913728 @default.
- W4214602502 date "2022-02-28" @default.
- W4214602502 modified "2023-10-01" @default.
- W4214602502 title "Introducing State-of-the-Art Deep Learning Technique for Gap-Filling of Eddy Covariance Crop Evapotranspiration Data" @default.
- W4214602502 cites W1838347895 @default.
- W4214602502 cites W1965660907 @default.
- W4214602502 cites W2026430219 @default.
- W4214602502 cites W2033904036 @default.
- W4214602502 cites W2036197592 @default.
- W4214602502 cites W2089940084 @default.
- W4214602502 cites W2102183854 @default.
- W4214602502 cites W2113225993 @default.
- W4214602502 cites W2124437404 @default.
- W4214602502 cites W2127564270 @default.
- W4214602502 cites W2138083030 @default.
- W4214602502 cites W2146421864 @default.
- W4214602502 cites W2148064007 @default.
- W4214602502 cites W2151478249 @default.
- W4214602502 cites W2172267151 @default.
- W4214602502 cites W2775688604 @default.
- W4214602502 cites W2785822431 @default.
- W4214602502 cites W2887176132 @default.
- W4214602502 cites W2913323966 @default.
- W4214602502 cites W2973103848 @default.
- W4214602502 cites W2975926778 @default.
- W4214602502 cites W3021749103 @default.
- W4214602502 cites W786674047 @default.
- W4214602502 doi "https://doi.org/10.3390/w14050763" @default.
- W4214602502 hasPublicationYear "2022" @default.
- W4214602502 type Work @default.
- W4214602502 citedByCount "3" @default.
- W4214602502 countsByYear W42146025022022 @default.
- W4214602502 countsByYear W42146025022023 @default.
- W4214602502 crossrefType "journal-article" @default.
- W4214602502 hasAuthorship W4214602502A5045309524 @default.
- W4214602502 hasAuthorship W4214602502A5049513923 @default.
- W4214602502 hasAuthorship W4214602502A5064090994 @default.
- W4214602502 hasAuthorship W4214602502A5065909484 @default.
- W4214602502 hasAuthorship W4214602502A5082817470 @default.
- W4214602502 hasAuthorship W4214602502A5090913728 @default.
- W4214602502 hasBestOaLocation W42146025021 @default.
- W4214602502 hasConcept C105795698 @default.
- W4214602502 hasConcept C106131492 @default.
- W4214602502 hasConcept C110872660 @default.
- W4214602502 hasConcept C139945424 @default.
- W4214602502 hasConcept C140779682 @default.
- W4214602502 hasConcept C153294291 @default.
- W4214602502 hasConcept C158960510 @default.
- W4214602502 hasConcept C176783924 @default.
- W4214602502 hasConcept C18903297 @default.
- W4214602502 hasConcept C205649164 @default.
- W4214602502 hasConcept C22679943 @default.
- W4214602502 hasConcept C31972630 @default.
- W4214602502 hasConcept C33923547 @default.
- W4214602502 hasConcept C35187779 @default.
- W4214602502 hasConcept C39432304 @default.
- W4214602502 hasConcept C41008148 @default.
- W4214602502 hasConcept C86803240 @default.
- W4214602502 hasConceptScore W4214602502C105795698 @default.
- W4214602502 hasConceptScore W4214602502C106131492 @default.
- W4214602502 hasConceptScore W4214602502C110872660 @default.
- W4214602502 hasConceptScore W4214602502C139945424 @default.
- W4214602502 hasConceptScore W4214602502C140779682 @default.
- W4214602502 hasConceptScore W4214602502C153294291 @default.
- W4214602502 hasConceptScore W4214602502C158960510 @default.
- W4214602502 hasConceptScore W4214602502C176783924 @default.
- W4214602502 hasConceptScore W4214602502C18903297 @default.
- W4214602502 hasConceptScore W4214602502C205649164 @default.
- W4214602502 hasConceptScore W4214602502C22679943 @default.
- W4214602502 hasConceptScore W4214602502C31972630 @default.
- W4214602502 hasConceptScore W4214602502C33923547 @default.
- W4214602502 hasConceptScore W4214602502C35187779 @default.
- W4214602502 hasConceptScore W4214602502C39432304 @default.
- W4214602502 hasConceptScore W4214602502C41008148 @default.
- W4214602502 hasConceptScore W4214602502C86803240 @default.
- W4214602502 hasIssue "5" @default.
- W4214602502 hasLocation W42146025021 @default.
- W4214602502 hasLocation W42146025022 @default.
- W4214602502 hasOpenAccess W4214602502 @default.
- W4214602502 hasPrimaryLocation W42146025021 @default.
- W4214602502 hasRelatedWork W2038382006 @default.
- W4214602502 hasRelatedWork W2040693669 @default.
- W4214602502 hasRelatedWork W2424470468 @default.
- W4214602502 hasRelatedWork W2726517715 @default.
- W4214602502 hasRelatedWork W2796090099 @default.
- W4214602502 hasRelatedWork W3018935317 @default.
- W4214602502 hasRelatedWork W3143790976 @default.
- W4214602502 hasRelatedWork W3164066767 @default.
- W4214602502 hasRelatedWork W4295168957 @default.
- W4214602502 hasRelatedWork W4297282674 @default.
- W4214602502 hasVolume "14" @default.