Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214608544> ?p ?o ?g. }
- W4214608544 endingPage "386" @default.
- W4214608544 startingPage "377" @default.
- W4214608544 abstract "AbstractSleep is an important aspect of human body which alternatively decides the physical and mental conditions. It has been seen that several sleep-related disorders are affected with irrespective of different age group subjects. The most important part of diagnosis any types of sleep disorders is the classification of sleep stages. But the manual inspection of sleep-related behavior is quite difficult and more time-consuming process. Sometimes it leads toward several other neurological disorders. Therefore in this research work, we propose an automated sleep staging approach for the classification of the sleep stages. Mainly the proposed experiments followed three basic steps such as preprocessing feature extraction, feature selection, and classification. The entire experiment is conducted upon the ISRUC-Sleep dataset. The proposed model reported an overall accuracy of 97.73% using machine learning classification model.KeywordsElectroencephalographyAutomatic sleep stage analysisTime–frequency featuresMachine learning" @default.
- W4214608544 created "2022-03-02" @default.
- W4214608544 creator A5062662531 @default.
- W4214608544 creator A5081069413 @default.
- W4214608544 date "2022-01-01" @default.
- W4214608544 modified "2023-10-17" @default.
- W4214608544 title "Machine Learning Model for Automated Sleep Scoring Based on Single-Channel EEG Signal Data" @default.
- W4214608544 cites W1974150017 @default.
- W4214608544 cites W1978347377 @default.
- W4214608544 cites W1980230025 @default.
- W4214608544 cites W1993010145 @default.
- W4214608544 cites W1995585507 @default.
- W4214608544 cites W1996369579 @default.
- W4214608544 cites W2013459885 @default.
- W4214608544 cites W2021899965 @default.
- W4214608544 cites W2023709867 @default.
- W4214608544 cites W2038971587 @default.
- W4214608544 cites W2042050378 @default.
- W4214608544 cites W2043176976 @default.
- W4214608544 cites W2043224204 @default.
- W4214608544 cites W2044517432 @default.
- W4214608544 cites W2048219658 @default.
- W4214608544 cites W2054384069 @default.
- W4214608544 cites W2068685172 @default.
- W4214608544 cites W2071522110 @default.
- W4214608544 cites W2083048717 @default.
- W4214608544 cites W2084709777 @default.
- W4214608544 cites W2088478798 @default.
- W4214608544 cites W2089365873 @default.
- W4214608544 cites W2094605225 @default.
- W4214608544 cites W2102376611 @default.
- W4214608544 cites W2124644809 @default.
- W4214608544 cites W2148104502 @default.
- W4214608544 cites W2170021941 @default.
- W4214608544 cites W2172894528 @default.
- W4214608544 cites W2175099382 @default.
- W4214608544 cites W2289823396 @default.
- W4214608544 cites W2319851220 @default.
- W4214608544 cites W2339955186 @default.
- W4214608544 cites W2396351021 @default.
- W4214608544 cites W2417221209 @default.
- W4214608544 cites W2475148710 @default.
- W4214608544 cites W2513059566 @default.
- W4214608544 cites W2516530906 @default.
- W4214608544 cites W2518845577 @default.
- W4214608544 cites W2560384232 @default.
- W4214608544 cites W2565543439 @default.
- W4214608544 cites W2601105035 @default.
- W4214608544 cites W2612047884 @default.
- W4214608544 cites W2771006757 @default.
- W4214608544 cites W2773915734 @default.
- W4214608544 cites W2774835643 @default.
- W4214608544 cites W2787695526 @default.
- W4214608544 cites W2898494868 @default.
- W4214608544 cites W2898862906 @default.
- W4214608544 cites W2960550590 @default.
- W4214608544 cites W3006728628 @default.
- W4214608544 doi "https://doi.org/10.1007/978-981-16-7182-1_30" @default.
- W4214608544 hasPublicationYear "2022" @default.
- W4214608544 type Work @default.
- W4214608544 citedByCount "0" @default.
- W4214608544 crossrefType "book-chapter" @default.
- W4214608544 hasAuthorship W4214608544A5062662531 @default.
- W4214608544 hasAuthorship W4214608544A5081069413 @default.
- W4214608544 hasConcept C10551718 @default.
- W4214608544 hasConcept C111919701 @default.
- W4214608544 hasConcept C119857082 @default.
- W4214608544 hasConcept C138885662 @default.
- W4214608544 hasConcept C148483581 @default.
- W4214608544 hasConcept C153180895 @default.
- W4214608544 hasConcept C154945302 @default.
- W4214608544 hasConcept C15744967 @default.
- W4214608544 hasConcept C169760540 @default.
- W4214608544 hasConcept C2775841894 @default.
- W4214608544 hasConcept C2776401178 @default.
- W4214608544 hasConcept C2778205975 @default.
- W4214608544 hasConcept C2910364982 @default.
- W4214608544 hasConcept C34736171 @default.
- W4214608544 hasConcept C41008148 @default.
- W4214608544 hasConcept C41895202 @default.
- W4214608544 hasConcept C522805319 @default.
- W4214608544 hasConcept C52622490 @default.
- W4214608544 hasConceptScore W4214608544C10551718 @default.
- W4214608544 hasConceptScore W4214608544C111919701 @default.
- W4214608544 hasConceptScore W4214608544C119857082 @default.
- W4214608544 hasConceptScore W4214608544C138885662 @default.
- W4214608544 hasConceptScore W4214608544C148483581 @default.
- W4214608544 hasConceptScore W4214608544C153180895 @default.
- W4214608544 hasConceptScore W4214608544C154945302 @default.
- W4214608544 hasConceptScore W4214608544C15744967 @default.
- W4214608544 hasConceptScore W4214608544C169760540 @default.
- W4214608544 hasConceptScore W4214608544C2775841894 @default.
- W4214608544 hasConceptScore W4214608544C2776401178 @default.
- W4214608544 hasConceptScore W4214608544C2778205975 @default.
- W4214608544 hasConceptScore W4214608544C2910364982 @default.
- W4214608544 hasConceptScore W4214608544C34736171 @default.
- W4214608544 hasConceptScore W4214608544C41008148 @default.
- W4214608544 hasConceptScore W4214608544C41895202 @default.