Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214617464> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4214617464 endingPage "57" @default.
- W4214617464 startingPage "41" @default.
- W4214617464 abstract "In the study, a syllable-scale synchronization study was carried out by considering the grammatical structure of Turkish to emphasize simultaneously the sound and the text. Therefore, it was aimed to classify the vowels and consonants in Turkish within the word. For this purpose, two different Artificial Neural Network (ANN) models were preferred for this classification, and also the Mel-Frequency Cepstrum Coefficients method was preferred for extracting features of voice data. It has been observed that ANNs give the best results with deep learning. Tests were made with different numbers of coefficients in feature extraction. In the first stage of this study, a certain number of recordings were taken from the vowels and consonants in Turkish. Then, their feature was extracted and prepared for the training of networks. The best network structure and parameters were selected as a result of training and test made with different parameters. In this training, networks were asked to distinguish vowels from consonants. Afterward, the vowel-consonant distinction was made among 10 predetermined vectors of words and phrases. Layer-recurrent Neural Network and Pattern Recognition Network achieved an average success of 97.43% and 98.04%, respectively, in deep learning training carried out through the Mathworks Matlab software. Because Pattern Recognition Network achieved 98.82% success in recognizing vowels and 97.27% in recognizing consonants, this network model was preferred in vowel-consonant classification. After the classification process, timing files were created by determining the transition times of the vowels in the word. In the last step, an interface was created on the C# .NET platform for the synchronization process, and a syllabic algorithm was developed in this interface to emphasize the syllable synchronization of the text. Thus, the desired high precision was achieved in the simultaneous highlighting of the words." @default.
- W4214617464 created "2022-03-02" @default.
- W4214617464 creator A5040499593 @default.
- W4214617464 creator A5044945114 @default.
- W4214617464 date "2022-03-01" @default.
- W4214617464 modified "2023-10-05" @default.
- W4214617464 title "Classification Vowel-Consonant Letters with Deep Neural Networks in Turkish and Text-Voice Synchronization on a Basis Syllable Size" @default.
- W4214617464 cites W1618516435 @default.
- W4214617464 cites W1995341919 @default.
- W4214617464 cites W1996413013 @default.
- W4214617464 cites W2030895381 @default.
- W4214617464 cites W2110485445 @default.
- W4214617464 cites W2136922672 @default.
- W4214617464 cites W4248510537 @default.
- W4214617464 doi "https://doi.org/10.21597/jist.957879" @default.
- W4214617464 hasPublicationYear "2022" @default.
- W4214617464 type Work @default.
- W4214617464 citedByCount "0" @default.
- W4214617464 crossrefType "journal-article" @default.
- W4214617464 hasAuthorship W4214617464A5040499593 @default.
- W4214617464 hasAuthorship W4214617464A5044945114 @default.
- W4214617464 hasBestOaLocation W42146174641 @default.
- W4214617464 hasConcept C109089402 @default.
- W4214617464 hasConcept C138885662 @default.
- W4214617464 hasConcept C153180895 @default.
- W4214617464 hasConcept C154945302 @default.
- W4214617464 hasConcept C2524010 @default.
- W4214617464 hasConcept C2776401178 @default.
- W4214617464 hasConcept C2778203577 @default.
- W4214617464 hasConcept C2779581591 @default.
- W4214617464 hasConcept C2781121862 @default.
- W4214617464 hasConcept C28490314 @default.
- W4214617464 hasConcept C33923547 @default.
- W4214617464 hasConcept C41008148 @default.
- W4214617464 hasConcept C41895202 @default.
- W4214617464 hasConcept C50644808 @default.
- W4214617464 hasConcept C90805587 @default.
- W4214617464 hasConceptScore W4214617464C109089402 @default.
- W4214617464 hasConceptScore W4214617464C138885662 @default.
- W4214617464 hasConceptScore W4214617464C153180895 @default.
- W4214617464 hasConceptScore W4214617464C154945302 @default.
- W4214617464 hasConceptScore W4214617464C2524010 @default.
- W4214617464 hasConceptScore W4214617464C2776401178 @default.
- W4214617464 hasConceptScore W4214617464C2778203577 @default.
- W4214617464 hasConceptScore W4214617464C2779581591 @default.
- W4214617464 hasConceptScore W4214617464C2781121862 @default.
- W4214617464 hasConceptScore W4214617464C28490314 @default.
- W4214617464 hasConceptScore W4214617464C33923547 @default.
- W4214617464 hasConceptScore W4214617464C41008148 @default.
- W4214617464 hasConceptScore W4214617464C41895202 @default.
- W4214617464 hasConceptScore W4214617464C50644808 @default.
- W4214617464 hasConceptScore W4214617464C90805587 @default.
- W4214617464 hasIssue "1" @default.
- W4214617464 hasLocation W42146174641 @default.
- W4214617464 hasLocation W42146174642 @default.
- W4214617464 hasOpenAccess W4214617464 @default.
- W4214617464 hasPrimaryLocation W42146174641 @default.
- W4214617464 hasRelatedWork W1604316805 @default.
- W4214617464 hasRelatedWork W2002773879 @default.
- W4214617464 hasRelatedWork W2004149178 @default.
- W4214617464 hasRelatedWork W2026982236 @default.
- W4214617464 hasRelatedWork W2027363368 @default.
- W4214617464 hasRelatedWork W2353337733 @default.
- W4214617464 hasRelatedWork W2355736622 @default.
- W4214617464 hasRelatedWork W2548117074 @default.
- W4214617464 hasRelatedWork W2801025542 @default.
- W4214617464 hasRelatedWork W4242996984 @default.
- W4214617464 hasVolume "12" @default.
- W4214617464 isParatext "false" @default.
- W4214617464 isRetracted "false" @default.
- W4214617464 workType "article" @default.