Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214626070> ?p ?o ?g. }
- W4214626070 endingPage "14551" @default.
- W4214626070 startingPage "14529" @default.
- W4214626070 abstract "Smoking cessation efforts can be greatly influenced by providing just-in-time intervention to individuals who are trying to quit smoking. Detecting smoking activity accurately among the confounding activities of daily living (ADLs) being monitored by the wearable device is a challenging and intriguing research problem. This study aims to develop a machine learning based modeling framework to identify the smoking activity among the confounding ADLs in real-time using the streaming data from the wrist-wearable IMU (6-axis inertial measurement unit) sensor. A low-cost wrist-wearable device has been designed and developed to collect raw sensor data from subjects for the activities. A sliding window mechanism has been used to process the streaming raw sensor data and extract several time-domain, frequency-domain, and descriptive features. Hyperparameter tuning and feature selection have been done to identify best hyperparameters and features respectively. Subsequently, multi-class classification models are developed and validated using in-sample and out-of-sample testing. The developed models obtained predictive accuracy (area under receiver operating curve) up to 98.7% for predicting the smoking activity. The findings of this study will lead to a novel application of wearable devices to accurately detect smoking activity in real-time. It will further help the healthcare professionals in monitoring their patients who are smokers by providing just-in-time intervention to help them quit smoking. The application of this framework can be extended to more preventive healthcare use-cases and detection of other activities of interest.The online version contains supplementary material available at 10.1007/s11042-022-12349-6." @default.
- W4214626070 created "2022-03-02" @default.
- W4214626070 creator A5045177459 @default.
- W4214626070 creator A5063741379 @default.
- W4214626070 creator A5091910820 @default.
- W4214626070 date "2022-02-25" @default.
- W4214626070 modified "2023-10-17" @default.
- W4214626070 title "Real-time prediction of smoking activity using machine learning based multi-class classification model" @default.
- W4214626070 cites W1541396632 @default.
- W4214626070 cites W1563088657 @default.
- W4214626070 cites W1751390179 @default.
- W4214626070 cites W1931443116 @default.
- W4214626070 cites W1937091965 @default.
- W4214626070 cites W1972143523 @default.
- W4214626070 cites W1986333129 @default.
- W4214626070 cites W1988790447 @default.
- W4214626070 cites W2006151125 @default.
- W4214626070 cites W2011375304 @default.
- W4214626070 cites W2014915963 @default.
- W4214626070 cites W2031827201 @default.
- W4214626070 cites W2033876581 @default.
- W4214626070 cites W2051050593 @default.
- W4214626070 cites W2054950865 @default.
- W4214626070 cites W2060758175 @default.
- W4214626070 cites W2088366166 @default.
- W4214626070 cites W2093040750 @default.
- W4214626070 cites W2104935961 @default.
- W4214626070 cites W2111605864 @default.
- W4214626070 cites W2112779498 @default.
- W4214626070 cites W2123622898 @default.
- W4214626070 cites W2125283600 @default.
- W4214626070 cites W2125628414 @default.
- W4214626070 cites W2128121198 @default.
- W4214626070 cites W2129896239 @default.
- W4214626070 cites W2132691216 @default.
- W4214626070 cites W2142009207 @default.
- W4214626070 cites W2148217011 @default.
- W4214626070 cites W2157825442 @default.
- W4214626070 cites W2169008967 @default.
- W4214626070 cites W2217028946 @default.
- W4214626070 cites W2268243276 @default.
- W4214626070 cites W2279145160 @default.
- W4214626070 cites W2338891144 @default.
- W4214626070 cites W2512118262 @default.
- W4214626070 cites W2520974030 @default.
- W4214626070 cites W2522625724 @default.
- W4214626070 cites W2588130448 @default.
- W4214626070 cites W2593097165 @default.
- W4214626070 cites W2605312177 @default.
- W4214626070 cites W2605721783 @default.
- W4214626070 cites W2615511893 @default.
- W4214626070 cites W2735743568 @default.
- W4214626070 cites W2766843744 @default.
- W4214626070 cites W2789941461 @default.
- W4214626070 cites W2794595230 @default.
- W4214626070 cites W2806133184 @default.
- W4214626070 cites W2883485963 @default.
- W4214626070 cites W2887355428 @default.
- W4214626070 cites W2893664206 @default.
- W4214626070 cites W2903950532 @default.
- W4214626070 cites W2911914726 @default.
- W4214626070 cites W2911964244 @default.
- W4214626070 cites W2930363294 @default.
- W4214626070 cites W2936610935 @default.
- W4214626070 cites W2969727771 @default.
- W4214626070 cites W2978892232 @default.
- W4214626070 cites W2987751974 @default.
- W4214626070 cites W3016739442 @default.
- W4214626070 cites W4233303333 @default.
- W4214626070 cites W4233970183 @default.
- W4214626070 cites W4239573722 @default.
- W4214626070 cites W4292548574 @default.
- W4214626070 doi "https://doi.org/10.1007/s11042-022-12349-6" @default.
- W4214626070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35233178" @default.
- W4214626070 hasPublicationYear "2022" @default.
- W4214626070 type Work @default.
- W4214626070 citedByCount "2" @default.
- W4214626070 countsByYear W42146260702022 @default.
- W4214626070 countsByYear W42146260702023 @default.
- W4214626070 crossrefType "journal-article" @default.
- W4214626070 hasAuthorship W4214626070A5045177459 @default.
- W4214626070 hasAuthorship W4214626070A5063741379 @default.
- W4214626070 hasAuthorship W4214626070A5091910820 @default.
- W4214626070 hasBestOaLocation W42146260701 @default.
- W4214626070 hasConcept C118552586 @default.
- W4214626070 hasConcept C119857082 @default.
- W4214626070 hasConcept C121687571 @default.
- W4214626070 hasConcept C149635348 @default.
- W4214626070 hasConcept C150594956 @default.
- W4214626070 hasConcept C154945302 @default.
- W4214626070 hasConcept C185592680 @default.
- W4214626070 hasConcept C198531522 @default.
- W4214626070 hasConcept C41008148 @default.
- W4214626070 hasConcept C43617362 @default.
- W4214626070 hasConcept C58471807 @default.
- W4214626070 hasConcept C71924100 @default.
- W4214626070 hasConcept C79061980 @default.
- W4214626070 hasConcept C79544238 @default.