Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214628066> ?p ?o ?g. }
- W4214628066 endingPage "756" @default.
- W4214628066 startingPage "756" @default.
- W4214628066 abstract "Online sales and purchases are increasing daily, and they generally involve credit card transactions. This not only provides convenience to the end-user but also increases the frequency of online credit card fraud. In the recent years, in some countries, this fraud increase has led to an exponential increase in credit card fraud detection, which has become increasingly important to address this security issue. Recent studies have proposed machine learning (ML)-based solutions for detecting fraudulent credit card transactions, but their detection scores still need improvement due to the imbalance of classes in any given dataset. Few approaches have achieved exceptional results on different datasets. In this study, the Kaggle dataset was used to develop a deep learning (DL)-based approach to solve the text data problem. A novel text2IMG conversion technique is proposed that generates small images. The images are fed into a CNN architecture with class weights using the inverse frequency method to resolve the class imbalance issue. DL and ML approaches were applied to verify the robustness and validity of the proposed system. An accuracy of 99.87% was achieved by Coarse-KNN using deep features of the proposed CNN." @default.
- W4214628066 created "2022-03-02" @default.
- W4214628066 creator A5010706593 @default.
- W4214628066 creator A5070901131 @default.
- W4214628066 creator A5074405334 @default.
- W4214628066 creator A5077990460 @default.
- W4214628066 creator A5078803485 @default.
- W4214628066 creator A5080314051 @default.
- W4214628066 creator A5087487528 @default.
- W4214628066 date "2022-03-01" @default.
- W4214628066 modified "2023-10-18" @default.
- W4214628066 title "A Novel text2IMG Mechanism of Credit Card Fraud Detection: A Deep Learning Approach" @default.
- W4214628066 cites W2140196014 @default.
- W4214628066 cites W2330219538 @default.
- W4214628066 cites W2484065175 @default.
- W4214628066 cites W2509460041 @default.
- W4214628066 cites W2612056740 @default.
- W4214628066 cites W2779931100 @default.
- W4214628066 cites W2912788434 @default.
- W4214628066 cites W2930363294 @default.
- W4214628066 cites W2944842185 @default.
- W4214628066 cites W2945876440 @default.
- W4214628066 cites W2958026736 @default.
- W4214628066 cites W2970146637 @default.
- W4214628066 cites W2971419924 @default.
- W4214628066 cites W2983956761 @default.
- W4214628066 cites W2998586455 @default.
- W4214628066 cites W3006306959 @default.
- W4214628066 cites W3006576387 @default.
- W4214628066 cites W3009006131 @default.
- W4214628066 cites W3025519219 @default.
- W4214628066 cites W3040219594 @default.
- W4214628066 cites W3082648102 @default.
- W4214628066 cites W3095164600 @default.
- W4214628066 cites W3118316820 @default.
- W4214628066 cites W3122007073 @default.
- W4214628066 cites W3127181174 @default.
- W4214628066 cites W3129693849 @default.
- W4214628066 cites W3135347679 @default.
- W4214628066 cites W3157532648 @default.
- W4214628066 cites W3167790072 @default.
- W4214628066 cites W3169069422 @default.
- W4214628066 cites W3171579381 @default.
- W4214628066 cites W3171908901 @default.
- W4214628066 cites W3173866276 @default.
- W4214628066 cites W3197036710 @default.
- W4214628066 cites W3201159086 @default.
- W4214628066 cites W4200028901 @default.
- W4214628066 cites W4200459217 @default.
- W4214628066 cites W4210634667 @default.
- W4214628066 cites W4242768683 @default.
- W4214628066 cites W435157458 @default.
- W4214628066 doi "https://doi.org/10.3390/electronics11050756" @default.
- W4214628066 hasPublicationYear "2022" @default.
- W4214628066 type Work @default.
- W4214628066 citedByCount "19" @default.
- W4214628066 countsByYear W42146280662022 @default.
- W4214628066 countsByYear W42146280662023 @default.
- W4214628066 crossrefType "journal-article" @default.
- W4214628066 hasAuthorship W4214628066A5010706593 @default.
- W4214628066 hasAuthorship W4214628066A5070901131 @default.
- W4214628066 hasAuthorship W4214628066A5074405334 @default.
- W4214628066 hasAuthorship W4214628066A5077990460 @default.
- W4214628066 hasAuthorship W4214628066A5078803485 @default.
- W4214628066 hasAuthorship W4214628066A5080314051 @default.
- W4214628066 hasAuthorship W4214628066A5087487528 @default.
- W4214628066 hasBestOaLocation W42146280661 @default.
- W4214628066 hasConcept C104317684 @default.
- W4214628066 hasConcept C108583219 @default.
- W4214628066 hasConcept C119857082 @default.
- W4214628066 hasConcept C136764020 @default.
- W4214628066 hasConcept C145097563 @default.
- W4214628066 hasConcept C154945302 @default.
- W4214628066 hasConcept C185592680 @default.
- W4214628066 hasConcept C2780747020 @default.
- W4214628066 hasConcept C2983355114 @default.
- W4214628066 hasConcept C41008148 @default.
- W4214628066 hasConcept C55493867 @default.
- W4214628066 hasConcept C63479239 @default.
- W4214628066 hasConceptScore W4214628066C104317684 @default.
- W4214628066 hasConceptScore W4214628066C108583219 @default.
- W4214628066 hasConceptScore W4214628066C119857082 @default.
- W4214628066 hasConceptScore W4214628066C136764020 @default.
- W4214628066 hasConceptScore W4214628066C145097563 @default.
- W4214628066 hasConceptScore W4214628066C154945302 @default.
- W4214628066 hasConceptScore W4214628066C185592680 @default.
- W4214628066 hasConceptScore W4214628066C2780747020 @default.
- W4214628066 hasConceptScore W4214628066C2983355114 @default.
- W4214628066 hasConceptScore W4214628066C41008148 @default.
- W4214628066 hasConceptScore W4214628066C55493867 @default.
- W4214628066 hasConceptScore W4214628066C63479239 @default.
- W4214628066 hasFunder F4320323722 @default.
- W4214628066 hasIssue "5" @default.
- W4214628066 hasLocation W42146280661 @default.
- W4214628066 hasLocation W42146280662 @default.
- W4214628066 hasOpenAccess W4214628066 @default.
- W4214628066 hasPrimaryLocation W42146280661 @default.
- W4214628066 hasRelatedWork W2886330306 @default.