Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214633816> ?p ?o ?g. }
- W4214633816 endingPage "435" @default.
- W4214633816 startingPage "413" @default.
- W4214633816 abstract "Identifying the factors that drive the cross-section of expected returns is challenging for at least three reasons. First, the choice of testing approach (time series versus cross-sectional) will deliver different sets of factors. Second, varying test portfolio sorts changes the importance of candidate factors. Finally, given the hundreds of factors that have been proposed, test multiplicity must be dealt with. We propose a new method that makes measured progress in addressing these key challenges. We apply our method in a panel regression setting and shed some light on the puzzling empirical result that the market factor drives the bulk of the variance of stock returns, but is often knocked out in cross-sectional tests. In our setup, the market factor is not eliminated. Further, we bypass arbitrary portfolio sorts and instead execute our tests on individual stocks with no loss in power. Finally, our bootstrap implementation, which allows us to impose the null hypothesis of no cross-sectional explanatory power, naturally controls for the multiple testing problem." @default.
- W4214633816 created "2022-03-02" @default.
- W4214633816 creator A5021293751 @default.
- W4214633816 creator A5088627183 @default.
- W4214633816 date "2021-08-01" @default.
- W4214633816 modified "2023-10-09" @default.
- W4214633816 title "Lucky factors" @default.
- W4214633816 cites W1511548726 @default.
- W4214633816 cites W1964661235 @default.
- W4214633816 cites W1992868019 @default.
- W4214633816 cites W1995834279 @default.
- W4214633816 cites W2002882686 @default.
- W4214633816 cites W2005556724 @default.
- W4214633816 cites W2017646344 @default.
- W4214633816 cites W2038201838 @default.
- W4214633816 cites W2076396344 @default.
- W4214633816 cites W2104795328 @default.
- W4214633816 cites W2111255674 @default.
- W4214633816 cites W2124601071 @default.
- W4214633816 cites W2135606128 @default.
- W4214633816 cites W2136120210 @default.
- W4214633816 cites W2142152317 @default.
- W4214633816 cites W2143152597 @default.
- W4214633816 cites W2149990348 @default.
- W4214633816 cites W2151353604 @default.
- W4214633816 cites W2165408259 @default.
- W4214633816 cites W2169645335 @default.
- W4214633816 cites W2182051792 @default.
- W4214633816 cites W2733190559 @default.
- W4214633816 cites W2783809539 @default.
- W4214633816 cites W2799643291 @default.
- W4214633816 cites W2964125295 @default.
- W4214633816 cites W3021190191 @default.
- W4214633816 cites W3023877248 @default.
- W4214633816 cites W3121274430 @default.
- W4214633816 cites W3121954329 @default.
- W4214633816 cites W3121999130 @default.
- W4214633816 cites W3122118888 @default.
- W4214633816 cites W3122239074 @default.
- W4214633816 cites W3122598467 @default.
- W4214633816 cites W3123066889 @default.
- W4214633816 cites W3123099641 @default.
- W4214633816 cites W3123178375 @default.
- W4214633816 cites W3123391938 @default.
- W4214633816 cites W3123556104 @default.
- W4214633816 cites W3123573490 @default.
- W4214633816 cites W3123639445 @default.
- W4214633816 cites W3123752263 @default.
- W4214633816 cites W3124431622 @default.
- W4214633816 cites W3124476761 @default.
- W4214633816 cites W3124847455 @default.
- W4214633816 cites W3125127984 @default.
- W4214633816 cites W3125206904 @default.
- W4214633816 cites W3125452688 @default.
- W4214633816 cites W3125458234 @default.
- W4214633816 cites W3125740950 @default.
- W4214633816 cites W4211134865 @default.
- W4214633816 cites W4211170237 @default.
- W4214633816 cites W4230576380 @default.
- W4214633816 cites W4237239309 @default.
- W4214633816 cites W4253208548 @default.
- W4214633816 cites W4256580786 @default.
- W4214633816 cites W4378628360 @default.
- W4214633816 doi "https://doi.org/10.1016/j.jfineco.2021.04.014" @default.
- W4214633816 hasPublicationYear "2021" @default.
- W4214633816 type Work @default.
- W4214633816 citedByCount "64" @default.
- W4214633816 countsByYear W42146338162015 @default.
- W4214633816 countsByYear W42146338162018 @default.
- W4214633816 countsByYear W42146338162019 @default.
- W4214633816 countsByYear W42146338162020 @default.
- W4214633816 countsByYear W42146338162021 @default.
- W4214633816 countsByYear W42146338162022 @default.
- W4214633816 countsByYear W42146338162023 @default.
- W4214633816 crossrefType "journal-article" @default.
- W4214633816 hasAuthorship W4214633816A5021293751 @default.
- W4214633816 hasAuthorship W4214633816A5088627183 @default.
- W4214633816 hasConcept C106159729 @default.
- W4214633816 hasConcept C10879293 @default.
- W4214633816 hasConcept C111472728 @default.
- W4214633816 hasConcept C121955636 @default.
- W4214633816 hasConcept C127413603 @default.
- W4214633816 hasConcept C138885662 @default.
- W4214633816 hasConcept C149091818 @default.
- W4214633816 hasConcept C149782125 @default.
- W4214633816 hasConcept C151730666 @default.
- W4214633816 hasConcept C161821725 @default.
- W4214633816 hasConcept C162324750 @default.
- W4214633816 hasConcept C186846655 @default.
- W4214633816 hasConcept C191988596 @default.
- W4214633816 hasConcept C196083921 @default.
- W4214633816 hasConcept C199360897 @default.
- W4214633816 hasConcept C204036174 @default.
- W4214633816 hasConcept C2777402642 @default.
- W4214633816 hasConcept C2777904410 @default.
- W4214633816 hasConcept C2780299701 @default.
- W4214633816 hasConcept C2780762169 @default.
- W4214633816 hasConcept C2780821815 @default.