Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214657682> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4214657682 endingPage "24577" @default.
- W4214657682 startingPage "24566" @default.
- W4214657682 abstract "A combined cycle power plant (CCPP) employs gas and steam turbines to generate 50% more power while utilizing the same fuel as a normal single cycle plant. The performance of a CCPP under full load is affected by a variety of factors such as weather, process interactions, and coupling, which makes it challenging to operate. Therefore, a reliable assessment of the maximum output power of a CCPP is required to improve plant reliability and monetary performance. In this paper, a predictive model based on a generalized additive model (GAM) is proposed for the electrical power prediction of a CCPP at full load. In GAM, a boosted tree and gradient boosting algorithm are considered as shape function and learning technique for modeling a non-linear relationship between input and output attributes. Furthermore, predictive models based on linear regression (LR), Gaussian process regression (GPR), multilayer perceptron neural network (MLP), support vector regression (SVR), decision tree (DT), and bootstrap-aggregated tree (BBT) are also designed for comparison purposes. Results reveal that GAM improves the RMSE by 74%, 68.8%, 70.3%, 54.8%, 21.2%, and 17.3% compared to LR, GPR, MLP, SVR, DT, and BBT, respectively. Furthermore, the results of the Man-Whitney U test and rank analysis also confirm the effectiveness of GAM for energy prediction of CCPP. Finally, it can be concluded that the proposed method is effective, robust, and accurate for the assessment of the maximum output power of a CCPP to improve plant consistency and financial performance." @default.
- W4214657682 created "2022-03-02" @default.
- W4214657682 creator A5028715246 @default.
- W4214657682 creator A5079131089 @default.
- W4214657682 date "2022-01-01" @default.
- W4214657682 modified "2023-10-18" @default.
- W4214657682 title "Electrical Energy Prediction of Combined Cycle Power Plant Using Gradient Boosted Generalized Additive Model" @default.
- W4214657682 cites W1128200355 @default.
- W4214657682 cites W1559338301 @default.
- W4214657682 cites W1974875084 @default.
- W4214657682 cites W1998987927 @default.
- W4214657682 cites W2023728066 @default.
- W4214657682 cites W2046945713 @default.
- W4214657682 cites W2064769840 @default.
- W4214657682 cites W2085008468 @default.
- W4214657682 cites W2114234756 @default.
- W4214657682 cites W2149033360 @default.
- W4214657682 cites W2164459021 @default.
- W4214657682 cites W2475877430 @default.
- W4214657682 cites W2905217250 @default.
- W4214657682 cites W2907866659 @default.
- W4214657682 cites W2984841888 @default.
- W4214657682 cites W3008014318 @default.
- W4214657682 cites W3012378843 @default.
- W4214657682 cites W3018966198 @default.
- W4214657682 cites W3041628376 @default.
- W4214657682 cites W3069920563 @default.
- W4214657682 cites W3115002311 @default.
- W4214657682 cites W3128323095 @default.
- W4214657682 cites W3132057070 @default.
- W4214657682 cites W3133745455 @default.
- W4214657682 cites W3141121221 @default.
- W4214657682 cites W3160768652 @default.
- W4214657682 cites W3208906812 @default.
- W4214657682 cites W4200565931 @default.
- W4214657682 cites W4237210482 @default.
- W4214657682 cites W4241615646 @default.
- W4214657682 cites W4298870098 @default.
- W4214657682 doi "https://doi.org/10.1109/access.2022.3153720" @default.
- W4214657682 hasPublicationYear "2022" @default.
- W4214657682 type Work @default.
- W4214657682 citedByCount "3" @default.
- W4214657682 countsByYear W42146576822022 @default.
- W4214657682 countsByYear W42146576822023 @default.
- W4214657682 crossrefType "journal-article" @default.
- W4214657682 hasAuthorship W4214657682A5028715246 @default.
- W4214657682 hasAuthorship W4214657682A5079131089 @default.
- W4214657682 hasBestOaLocation W42146576821 @default.
- W4214657682 hasConcept C154945302 @default.
- W4214657682 hasConcept C179717631 @default.
- W4214657682 hasConcept C33923547 @default.
- W4214657682 hasConcept C41008148 @default.
- W4214657682 hasConcept C50644808 @default.
- W4214657682 hasConceptScore W4214657682C154945302 @default.
- W4214657682 hasConceptScore W4214657682C179717631 @default.
- W4214657682 hasConceptScore W4214657682C33923547 @default.
- W4214657682 hasConceptScore W4214657682C41008148 @default.
- W4214657682 hasConceptScore W4214657682C50644808 @default.
- W4214657682 hasFunder F4320322120 @default.
- W4214657682 hasLocation W42146576821 @default.
- W4214657682 hasLocation W42146576822 @default.
- W4214657682 hasOpenAccess W4214657682 @default.
- W4214657682 hasPrimaryLocation W42146576821 @default.
- W4214657682 hasRelatedWork W1551818188 @default.
- W4214657682 hasRelatedWork W2034323331 @default.
- W4214657682 hasRelatedWork W2072632473 @default.
- W4214657682 hasRelatedWork W2186980807 @default.
- W4214657682 hasRelatedWork W2243550366 @default.
- W4214657682 hasRelatedWork W2328678893 @default.
- W4214657682 hasRelatedWork W2386387936 @default.
- W4214657682 hasRelatedWork W3042796155 @default.
- W4214657682 hasRelatedWork W3158157485 @default.
- W4214657682 hasRelatedWork W2284565437 @default.
- W4214657682 hasVolume "10" @default.
- W4214657682 isParatext "false" @default.
- W4214657682 isRetracted "false" @default.
- W4214657682 workType "article" @default.