Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214671570> ?p ?o ?g. }
- W4214671570 abstract "Point clouds are becoming essential in key applications with advances in capture technologies leading to large volumes of data. Compression is thus essential for storage and transmission. In this work, the state of the art for geometry and attribute compression methods with a focus on deep learning based approaches is reviewed. The challenges faced when compressing geometry and attributes are considered, with an analysis of the current approaches to address them, their limitations and the relations between deep learning and traditional ones. Current open questions in point cloud compression, existing solutions and perspectives are identified and discussed. Finally, the link between existing point cloud compression research and research problems to relevant areas of adjacent fields, such as rendering in computer graphics, mesh compression and point cloud quality assessment, is highlighted." @default.
- W4214671570 created "2022-03-02" @default.
- W4214671570 creator A5016854114 @default.
- W4214671570 creator A5034069364 @default.
- W4214671570 creator A5049361006 @default.
- W4214671570 creator A5051235308 @default.
- W4214671570 creator A5084912866 @default.
- W4214671570 date "2022-02-23" @default.
- W4214671570 modified "2023-10-15" @default.
- W4214671570 title "Survey on Deep Learning-Based Point Cloud Compression" @default.
- W4214671570 cites W1983303147 @default.
- W4214671570 cites W1994281242 @default.
- W4214671570 cites W2003554791 @default.
- W4214671570 cites W2016995838 @default.
- W4214671570 cites W2064675550 @default.
- W4214671570 cites W2110324476 @default.
- W4214671570 cites W2134076294 @default.
- W4214671570 cites W2142276208 @default.
- W4214671570 cites W2286803010 @default.
- W4214671570 cites W2319503556 @default.
- W4214671570 cites W2415653907 @default.
- W4214671570 cites W2609263042 @default.
- W4214671570 cites W2883604724 @default.
- W4214671570 cites W2888597899 @default.
- W4214671570 cites W2896435448 @default.
- W4214671570 cites W2905544027 @default.
- W4214671570 cites W2913109850 @default.
- W4214671570 cites W2917690002 @default.
- W4214671570 cites W2926206832 @default.
- W4214671570 cites W2967494177 @default.
- W4214671570 cites W2970849590 @default.
- W4214671570 cites W2985745509 @default.
- W4214671570 cites W2994763827 @default.
- W4214671570 cites W2999440435 @default.
- W4214671570 cites W3005584775 @default.
- W4214671570 cites W3014200484 @default.
- W4214671570 cites W3016258792 @default.
- W4214671570 cites W3018870341 @default.
- W4214671570 cites W3043597883 @default.
- W4214671570 cites W3088387282 @default.
- W4214671570 cites W3100435238 @default.
- W4214671570 cites W3113844551 @default.
- W4214671570 cites W3116896928 @default.
- W4214671570 cites W3123796381 @default.
- W4214671570 cites W3131242954 @default.
- W4214671570 cites W3134958357 @default.
- W4214671570 cites W3170603795 @default.
- W4214671570 cites W3171223006 @default.
- W4214671570 cites W3175145712 @default.
- W4214671570 cites W3185759054 @default.
- W4214671570 cites W3186560655 @default.
- W4214671570 cites W3213430939 @default.
- W4214671570 cites W4205262979 @default.
- W4214671570 cites W4211197043 @default.
- W4214671570 cites W4233857083 @default.
- W4214671570 cites W4236898369 @default.
- W4214671570 doi "https://doi.org/10.3389/frsip.2022.846972" @default.
- W4214671570 hasPublicationYear "2022" @default.
- W4214671570 type Work @default.
- W4214671570 citedByCount "7" @default.
- W4214671570 countsByYear W42146715702022 @default.
- W4214671570 countsByYear W42146715702023 @default.
- W4214671570 crossrefType "journal-article" @default.
- W4214671570 hasAuthorship W4214671570A5016854114 @default.
- W4214671570 hasAuthorship W4214671570A5034069364 @default.
- W4214671570 hasAuthorship W4214671570A5049361006 @default.
- W4214671570 hasAuthorship W4214671570A5051235308 @default.
- W4214671570 hasAuthorship W4214671570A5084912866 @default.
- W4214671570 hasBestOaLocation W42146715701 @default.
- W4214671570 hasConcept C111919701 @default.
- W4214671570 hasConcept C131979681 @default.
- W4214671570 hasConcept C154945302 @default.
- W4214671570 hasConcept C159985019 @default.
- W4214671570 hasConcept C180016635 @default.
- W4214671570 hasConcept C192562407 @default.
- W4214671570 hasConcept C205711294 @default.
- W4214671570 hasConcept C2522767166 @default.
- W4214671570 hasConcept C41008148 @default.
- W4214671570 hasConcept C78548338 @default.
- W4214671570 hasConcept C79974875 @default.
- W4214671570 hasConceptScore W4214671570C111919701 @default.
- W4214671570 hasConceptScore W4214671570C131979681 @default.
- W4214671570 hasConceptScore W4214671570C154945302 @default.
- W4214671570 hasConceptScore W4214671570C159985019 @default.
- W4214671570 hasConceptScore W4214671570C180016635 @default.
- W4214671570 hasConceptScore W4214671570C192562407 @default.
- W4214671570 hasConceptScore W4214671570C205711294 @default.
- W4214671570 hasConceptScore W4214671570C2522767166 @default.
- W4214671570 hasConceptScore W4214671570C41008148 @default.
- W4214671570 hasConceptScore W4214671570C78548338 @default.
- W4214671570 hasConceptScore W4214671570C79974875 @default.
- W4214671570 hasFunder F4320320883 @default.
- W4214671570 hasLocation W42146715701 @default.
- W4214671570 hasLocation W42146715702 @default.
- W4214671570 hasLocation W42146715703 @default.
- W4214671570 hasLocation W42146715704 @default.
- W4214671570 hasLocation W42146715705 @default.
- W4214671570 hasLocation W42146715706 @default.
- W4214671570 hasOpenAccess W4214671570 @default.
- W4214671570 hasPrimaryLocation W42146715701 @default.