Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214688545> ?p ?o ?g. }
- W4214688545 abstract "An artificial synapse is an essential element to construct a hardware‐based artificial neural network (ANN). While various synaptic devices have been proposed along with studies on electrical characteristics and proper applications, a small number of conductance states with nonlinear and asymmetric conductance changes have been problematic and imposed limits on computational performance. Their applications are thus still limited to the classification of simple images or acoustic datasets. Herein, a polymer electrolyte‐gated synaptic transistor (pEGST) is demonstrated for video‐based learning and inference using transfer learning. In particular, abnormal car detection (ACD) is attempted with video‐based learning and inference to avoid traffic accidents. The pEGST showed multiple states of 8,192 (=13 bits) for weight modulation with linear and symmetric conductance changes and helped reduce the error rate to 3% to judge whether a car in a video is abnormal." @default.
- W4214688545 created "2022-03-02" @default.
- W4214688545 creator A5008054386 @default.
- W4214688545 creator A5014240047 @default.
- W4214688545 creator A5018434372 @default.
- W4214688545 creator A5030152729 @default.
- W4214688545 creator A5051052797 @default.
- W4214688545 creator A5051908373 @default.
- W4214688545 creator A5058384103 @default.
- W4214688545 creator A5072328622 @default.
- W4214688545 creator A5080113248 @default.
- W4214688545 creator A5081735317 @default.
- W4214688545 creator A5090017113 @default.
- W4214688545 creator A5091027155 @default.
- W4214688545 date "2022-03-01" @default.
- W4214688545 modified "2023-10-18" @default.
- W4214688545 title "A Multiple‐State Ion Synaptic Transistor Applicable to Abnormal Car Detection with Transfer Learning" @default.
- W4214688545 cites W2018774711 @default.
- W4214688545 cites W2026145098 @default.
- W4214688545 cites W2053491312 @default.
- W4214688545 cites W2060501200 @default.
- W4214688545 cites W2067884955 @default.
- W4214688545 cites W2087748124 @default.
- W4214688545 cites W2089809945 @default.
- W4214688545 cites W2163630896 @default.
- W4214688545 cites W2552299751 @default.
- W4214688545 cites W2585407525 @default.
- W4214688545 cites W2591029953 @default.
- W4214688545 cites W2725548327 @default.
- W4214688545 cites W2778935320 @default.
- W4214688545 cites W2782046614 @default.
- W4214688545 cites W2787453651 @default.
- W4214688545 cites W2796625795 @default.
- W4214688545 cites W2802557048 @default.
- W4214688545 cites W2884760314 @default.
- W4214688545 cites W2898260903 @default.
- W4214688545 cites W2900142482 @default.
- W4214688545 cites W2902437043 @default.
- W4214688545 cites W2904140126 @default.
- W4214688545 cites W2911647396 @default.
- W4214688545 cites W2912495531 @default.
- W4214688545 cites W2913806846 @default.
- W4214688545 cites W2942216650 @default.
- W4214688545 cites W2960778947 @default.
- W4214688545 cites W2960912920 @default.
- W4214688545 cites W2964193755 @default.
- W4214688545 cites W2970608956 @default.
- W4214688545 cites W2976476957 @default.
- W4214688545 cites W2997958396 @default.
- W4214688545 cites W3006607400 @default.
- W4214688545 cites W3038499963 @default.
- W4214688545 cites W3043940359 @default.
- W4214688545 cites W3048118328 @default.
- W4214688545 cites W3114582267 @default.
- W4214688545 cites W3161316526 @default.
- W4214688545 cites W3167292039 @default.
- W4214688545 cites W4253385115 @default.
- W4214688545 doi "https://doi.org/10.1002/aisy.202100231" @default.
- W4214688545 hasPublicationYear "2022" @default.
- W4214688545 type Work @default.
- W4214688545 citedByCount "1" @default.
- W4214688545 countsByYear W42146885452023 @default.
- W4214688545 crossrefType "journal-article" @default.
- W4214688545 hasAuthorship W4214688545A5008054386 @default.
- W4214688545 hasAuthorship W4214688545A5014240047 @default.
- W4214688545 hasAuthorship W4214688545A5018434372 @default.
- W4214688545 hasAuthorship W4214688545A5030152729 @default.
- W4214688545 hasAuthorship W4214688545A5051052797 @default.
- W4214688545 hasAuthorship W4214688545A5051908373 @default.
- W4214688545 hasAuthorship W4214688545A5058384103 @default.
- W4214688545 hasAuthorship W4214688545A5072328622 @default.
- W4214688545 hasAuthorship W4214688545A5080113248 @default.
- W4214688545 hasAuthorship W4214688545A5081735317 @default.
- W4214688545 hasAuthorship W4214688545A5090017113 @default.
- W4214688545 hasAuthorship W4214688545A5091027155 @default.
- W4214688545 hasBestOaLocation W42146885451 @default.
- W4214688545 hasConcept C114614502 @default.
- W4214688545 hasConcept C119599485 @default.
- W4214688545 hasConcept C119857082 @default.
- W4214688545 hasConcept C121332964 @default.
- W4214688545 hasConcept C121932024 @default.
- W4214688545 hasConcept C127413603 @default.
- W4214688545 hasConcept C127445978 @default.
- W4214688545 hasConcept C150899416 @default.
- W4214688545 hasConcept C154945302 @default.
- W4214688545 hasConcept C15744967 @default.
- W4214688545 hasConcept C158622935 @default.
- W4214688545 hasConcept C165801399 @default.
- W4214688545 hasConcept C169760540 @default.
- W4214688545 hasConcept C172385210 @default.
- W4214688545 hasConcept C173608175 @default.
- W4214688545 hasConcept C2776175482 @default.
- W4214688545 hasConcept C2776214188 @default.
- W4214688545 hasConcept C33923547 @default.
- W4214688545 hasConcept C41008148 @default.
- W4214688545 hasConcept C50644808 @default.
- W4214688545 hasConcept C62520636 @default.
- W4214688545 hasConceptScore W4214688545C114614502 @default.
- W4214688545 hasConceptScore W4214688545C119599485 @default.
- W4214688545 hasConceptScore W4214688545C119857082 @default.