Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214713085> ?p ?o ?g. }
- W4214713085 endingPage "1136" @default.
- W4214713085 startingPage "1136" @default.
- W4214713085 abstract "Wheat dominates the Australian grain production market and accounts for 10–15% of the world’s 100 million tonnes annual global wheat trade. Accurate wheat yield prediction is critical to satisfying local consumption and increasing exports regionally and globally to meet human food security. This paper incorporates remote satellite-based information in a wheat-growing region in South Australia to estimate the yield by integrating the kernel ridge regression (KRR) method coupled with complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and the grey wolf optimisation (GWO). The hybrid model, ‘GWO-CEEMDAN-KRR,’ employing an initial pool of 23 different satellite-based predictors, is seen to outperform all the benchmark models and all the feature selection (ant colony, atom search, and particle swarm optimisation) methods that are implemented using a set of carefully screened satellite variables and a feature decomposition or CEEMDAN approach. A suite of statistical metrics and infographics comparing the predicted and measured yield shows a model prediction error that can be reduced by ~20% by employing the proposed GWO-CEEMDAN-KRR model. With the metrics verifying the accuracy of simulations, we also show that it is possible to optimise the wheat yield to achieve agricultural profits by quantifying and including the effects of satellite variables on potential yield. With further improvements in the proposed methodology, the GWO-CEEMDAN-KRR model can be adopted in agricultural yield simulation that requires remote sensing data to establish the relationships between crop health, yield, and other productivity features to support precision agriculture." @default.
- W4214713085 created "2022-03-02" @default.
- W4214713085 creator A5012650575 @default.
- W4214713085 creator A5027552079 @default.
- W4214713085 creator A5063903845 @default.
- W4214713085 creator A5065141057 @default.
- W4214713085 creator A5070051800 @default.
- W4214713085 creator A5082804219 @default.
- W4214713085 date "2022-02-25" @default.
- W4214713085 modified "2023-10-14" @default.
- W4214713085 title "Kernel Ridge Regression Hybrid Method for Wheat Yield Prediction with Satellite-Derived Predictors" @default.
- W4214713085 cites W1740585449 @default.
- W4214713085 cites W1967135612 @default.
- W4214713085 cites W1972420894 @default.
- W4214713085 cites W1973552978 @default.
- W4214713085 cites W1979636379 @default.
- W4214713085 cites W1984670478 @default.
- W4214713085 cites W1988121422 @default.
- W4214713085 cites W1989788683 @default.
- W4214713085 cites W1991938667 @default.
- W4214713085 cites W1999009363 @default.
- W4214713085 cites W2000621750 @default.
- W4214713085 cites W2010806274 @default.
- W4214713085 cites W2013973135 @default.
- W4214713085 cites W2021662310 @default.
- W4214713085 cites W2026818864 @default.
- W4214713085 cites W2032628842 @default.
- W4214713085 cites W2040246094 @default.
- W4214713085 cites W2042493419 @default.
- W4214713085 cites W2046498873 @default.
- W4214713085 cites W2053765539 @default.
- W4214713085 cites W2057154121 @default.
- W4214713085 cites W2058709694 @default.
- W4214713085 cites W2069466983 @default.
- W4214713085 cites W2075294859 @default.
- W4214713085 cites W2083553000 @default.
- W4214713085 cites W2101272580 @default.
- W4214713085 cites W2108084845 @default.
- W4214713085 cites W2108706807 @default.
- W4214713085 cites W2117613928 @default.
- W4214713085 cites W2126226085 @default.
- W4214713085 cites W2147746661 @default.
- W4214713085 cites W2148001371 @default.
- W4214713085 cites W2156710280 @default.
- W4214713085 cites W2157467184 @default.
- W4214713085 cites W2167443344 @default.
- W4214713085 cites W2216444323 @default.
- W4214713085 cites W2274744025 @default.
- W4214713085 cites W2319929171 @default.
- W4214713085 cites W2343193908 @default.
- W4214713085 cites W2430606261 @default.
- W4214713085 cites W2523681343 @default.
- W4214713085 cites W2581822685 @default.
- W4214713085 cites W2606048008 @default.
- W4214713085 cites W2753434909 @default.
- W4214713085 cites W2772354950 @default.
- W4214713085 cites W2775425027 @default.
- W4214713085 cites W2801076518 @default.
- W4214713085 cites W2889545660 @default.
- W4214713085 cites W2898519805 @default.
- W4214713085 cites W2899289605 @default.
- W4214713085 cites W2911287026 @default.
- W4214713085 cites W2911964244 @default.
- W4214713085 cites W2924610876 @default.
- W4214713085 cites W2940200036 @default.
- W4214713085 cites W2942803188 @default.
- W4214713085 cites W2944794516 @default.
- W4214713085 cites W2947179124 @default.
- W4214713085 cites W2953686964 @default.
- W4214713085 cites W2969418413 @default.
- W4214713085 cites W2974308494 @default.
- W4214713085 cites W2980653736 @default.
- W4214713085 cites W2990957319 @default.
- W4214713085 cites W2995007884 @default.
- W4214713085 cites W2995678734 @default.
- W4214713085 cites W2999658315 @default.
- W4214713085 cites W3000098473 @default.
- W4214713085 cites W3004203398 @default.
- W4214713085 cites W3008179697 @default.
- W4214713085 cites W3012717404 @default.
- W4214713085 cites W3014874376 @default.
- W4214713085 cites W3015527879 @default.
- W4214713085 cites W3029014910 @default.
- W4214713085 cites W3045046752 @default.
- W4214713085 cites W3076896779 @default.
- W4214713085 cites W3079760979 @default.
- W4214713085 cites W3085107006 @default.
- W4214713085 cites W3104791420 @default.
- W4214713085 cites W3127771660 @default.
- W4214713085 cites W3135366015 @default.
- W4214713085 cites W3169963517 @default.
- W4214713085 cites W3192238650 @default.
- W4214713085 cites W3196721192 @default.
- W4214713085 cites W3199475877 @default.
- W4214713085 cites W3200165735 @default.
- W4214713085 cites W4200341517 @default.
- W4214713085 cites W4211007200 @default.
- W4214713085 doi "https://doi.org/10.3390/rs14051136" @default.