Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214715302> ?p ?o ?g. }
- W4214715302 endingPage "108364" @default.
- W4214715302 startingPage "108364" @default.
- W4214715302 abstract "Multi-view learning aims to obtain more comprehensive understanding than single-view learning by observing objects from different views. However, most existing multi-view learning algorithms are still facing problems in obtaining enough discriminative information from the multi-view data: (1) most models cannot fully exploit consistent and complementary information simultaneously; (2) existing group sparsity based multi-view learning methods cannot extract the most relevant and sparest features. This paper proposes the efficient group non-convex sparsity regularized partially shared dictionary learning for multi-view learning, which employs the partially shared dictionary learning model to excavate both consistency and complementarity simultaneously from the multi-view data, and utilizes the generalized group non-convex sparsity for more discriminative and sparser representations beyond the convex ℓ2,1 norm. To solve the non-convex optimization problem, we derive the generalized optimization framework for different group non-convex sparsity regularizers based on the proximal splitting method. Corresponding proximal operators for structured sparse coding in the framework are derived to form algorithms for different group non-convex sparsity regularizers, i.e., the ℓ2,p (0<p<1) norm and the ℓ2,log regularizer. In experiments, we conduct multi-view clustering in seven real-world multi-view datasets, and performances validate the effectiveness of both group information and non-convexity. Furthermore, results show that appropriate coefficient sharing ratios can help to exploit consistent information while keeping complementary information from multi-view data, thus helping to improve clustering performances. In addition, the convergence performances show that the proposed algorithm can obtain the best clustering performances among compared algorithms and can converge efficiently and stably with reasonable running time costs." @default.
- W4214715302 created "2022-03-02" @default.
- W4214715302 creator A5000582109 @default.
- W4214715302 creator A5011665157 @default.
- W4214715302 creator A5023248590 @default.
- W4214715302 creator A5058025659 @default.
- W4214715302 creator A5062429830 @default.
- W4214715302 creator A5066482792 @default.
- W4214715302 date "2022-04-01" @default.
- W4214715302 modified "2023-10-18" @default.
- W4214715302 title "Group non-convex sparsity regularized partially shared dictionary learning for multi-view learning" @default.
- W4214715302 cites W1128809682 @default.
- W4214715302 cites W1201875361 @default.
- W4214715302 cites W1902027874 @default.
- W4214715302 cites W1925417509 @default.
- W4214715302 cites W1967138577 @default.
- W4214715302 cites W1995442403 @default.
- W4214715302 cites W2001690812 @default.
- W4214715302 cites W2046769852 @default.
- W4214715302 cites W2061554433 @default.
- W4214715302 cites W2062006224 @default.
- W4214715302 cites W2087962968 @default.
- W4214715302 cites W2123432324 @default.
- W4214715302 cites W2146949217 @default.
- W4214715302 cites W2295151578 @default.
- W4214715302 cites W2588158124 @default.
- W4214715302 cites W2748391982 @default.
- W4214715302 cites W2752190933 @default.
- W4214715302 cites W2783659849 @default.
- W4214715302 cites W2789587413 @default.
- W4214715302 cites W2804340531 @default.
- W4214715302 cites W2808465901 @default.
- W4214715302 cites W2884956718 @default.
- W4214715302 cites W2895210058 @default.
- W4214715302 cites W2913094719 @default.
- W4214715302 cites W2921065608 @default.
- W4214715302 cites W2946510509 @default.
- W4214715302 cites W2963087412 @default.
- W4214715302 cites W2965535279 @default.
- W4214715302 cites W2988613494 @default.
- W4214715302 cites W2989044887 @default.
- W4214715302 cites W3003832334 @default.
- W4214715302 cites W3122451732 @default.
- W4214715302 cites W3124158594 @default.
- W4214715302 cites W3128183952 @default.
- W4214715302 cites W3145145356 @default.
- W4214715302 cites W3163761664 @default.
- W4214715302 cites W3181101419 @default.
- W4214715302 cites W4233857083 @default.
- W4214715302 cites W4235169531 @default.
- W4214715302 cites W4241727697 @default.
- W4214715302 cites W3015902165 @default.
- W4214715302 doi "https://doi.org/10.1016/j.knosys.2022.108364" @default.
- W4214715302 hasPublicationYear "2022" @default.
- W4214715302 type Work @default.
- W4214715302 citedByCount "3" @default.
- W4214715302 countsByYear W42147153022022 @default.
- W4214715302 countsByYear W42147153022023 @default.
- W4214715302 crossrefType "journal-article" @default.
- W4214715302 hasAuthorship W4214715302A5000582109 @default.
- W4214715302 hasAuthorship W4214715302A5011665157 @default.
- W4214715302 hasAuthorship W4214715302A5023248590 @default.
- W4214715302 hasAuthorship W4214715302A5058025659 @default.
- W4214715302 hasAuthorship W4214715302A5062429830 @default.
- W4214715302 hasAuthorship W4214715302A5066482792 @default.
- W4214715302 hasConcept C112680207 @default.
- W4214715302 hasConcept C11413529 @default.
- W4214715302 hasConcept C119857082 @default.
- W4214715302 hasConcept C154945302 @default.
- W4214715302 hasConcept C157972887 @default.
- W4214715302 hasConcept C165696696 @default.
- W4214715302 hasConcept C17744445 @default.
- W4214715302 hasConcept C191795146 @default.
- W4214715302 hasConcept C199539241 @default.
- W4214715302 hasConcept C2524010 @default.
- W4214715302 hasConcept C2776436953 @default.
- W4214715302 hasConcept C33923547 @default.
- W4214715302 hasConcept C38652104 @default.
- W4214715302 hasConcept C41008148 @default.
- W4214715302 hasConcept C73555534 @default.
- W4214715302 hasConcept C97931131 @default.
- W4214715302 hasConceptScore W4214715302C112680207 @default.
- W4214715302 hasConceptScore W4214715302C11413529 @default.
- W4214715302 hasConceptScore W4214715302C119857082 @default.
- W4214715302 hasConceptScore W4214715302C154945302 @default.
- W4214715302 hasConceptScore W4214715302C157972887 @default.
- W4214715302 hasConceptScore W4214715302C165696696 @default.
- W4214715302 hasConceptScore W4214715302C17744445 @default.
- W4214715302 hasConceptScore W4214715302C191795146 @default.
- W4214715302 hasConceptScore W4214715302C199539241 @default.
- W4214715302 hasConceptScore W4214715302C2524010 @default.
- W4214715302 hasConceptScore W4214715302C2776436953 @default.
- W4214715302 hasConceptScore W4214715302C33923547 @default.
- W4214715302 hasConceptScore W4214715302C38652104 @default.
- W4214715302 hasConceptScore W4214715302C41008148 @default.
- W4214715302 hasConceptScore W4214715302C73555534 @default.
- W4214715302 hasConceptScore W4214715302C97931131 @default.
- W4214715302 hasFunder F4320321001 @default.