Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214749209> ?p ?o ?g. }
- W4214749209 endingPage "3217" @default.
- W4214749209 startingPage "3209" @default.
- W4214749209 abstract "Surgical image segmentation is critical for surgical robot control and computer-assisted surgery. In the surgical scene, the local features of objects are highly similar, and the illumination interference is strong, which makes surgical image segmentation challenging. To address the above issues, a bilinear squeeze reasoning network is proposed for surgical image segmentation. In it, the space squeeze reasoning module is proposed, which adopts height pooling and width pooling to squeeze global contexts in the vertical and horizontal directions, respectively. The similarity between each horizontal position and each vertical position is calculated to encode long-range semantic dependencies and establish the affinity matrix. The feature maps are also squeezed from both the vertical and horizontal directions to model channel relations. Guided by channel relations, the affinity matrix is expanded to the same size as the input features. It captures long-range semantic dependencies from different directions, helping address the local similarity issue. Besides, a low-rank bilinear fusion module is proposed to enhance the model's ability to recognize similar features. This module is based on the low-rank bilinear model to capture the inter-layer feature relations. It integrates the location details from low-level features and semantic information from high-level features. Various semantics can be represented more accurately, which effectively improves feature representation. The proposed network achieves state-of-the-art performance on cataract image segmentation dataset CataSeg and robotic image segmentation dataset EndoVis 2018." @default.
- W4214749209 created "2022-03-02" @default.
- W4214749209 creator A5017968236 @default.
- W4214749209 creator A5033076846 @default.
- W4214749209 creator A5038613343 @default.
- W4214749209 creator A5039816737 @default.
- W4214749209 creator A5065679716 @default.
- W4214749209 creator A5069765960 @default.
- W4214749209 date "2022-07-01" @default.
- W4214749209 modified "2023-10-10" @default.
- W4214749209 title "Space Squeeze Reasoning and Low-Rank Bilinear Feature Fusion for Surgical Image Segmentation" @default.
- W4214749209 cites W2104657103 @default.
- W4214749209 cites W2194775991 @default.
- W4214749209 cites W2560023338 @default.
- W4214749209 cites W2563705555 @default.
- W4214749209 cites W2752782242 @default.
- W4214749209 cites W2772901904 @default.
- W4214749209 cites W2883502031 @default.
- W4214749209 cites W2955058313 @default.
- W4214749209 cites W2963091558 @default.
- W4214749209 cites W2963351448 @default.
- W4214749209 cites W2964309882 @default.
- W4214749209 cites W2967185966 @default.
- W4214749209 cites W2980225217 @default.
- W4214749209 cites W2982220924 @default.
- W4214749209 cites W2996495478 @default.
- W4214749209 cites W3008810159 @default.
- W4214749209 cites W3034978667 @default.
- W4214749209 cites W3048422314 @default.
- W4214749209 cites W3098339701 @default.
- W4214749209 cites W3105636206 @default.
- W4214749209 cites W3118688377 @default.
- W4214749209 cites W3150252053 @default.
- W4214749209 cites W3177052299 @default.
- W4214749209 cites W3183485125 @default.
- W4214749209 cites W4285555833 @default.
- W4214749209 doi "https://doi.org/10.1109/jbhi.2022.3154925" @default.
- W4214749209 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35226612" @default.
- W4214749209 hasPublicationYear "2022" @default.
- W4214749209 type Work @default.
- W4214749209 citedByCount "4" @default.
- W4214749209 countsByYear W42147492092023 @default.
- W4214749209 crossrefType "journal-article" @default.
- W4214749209 hasAuthorship W4214749209A5017968236 @default.
- W4214749209 hasAuthorship W4214749209A5033076846 @default.
- W4214749209 hasAuthorship W4214749209A5038613343 @default.
- W4214749209 hasAuthorship W4214749209A5039816737 @default.
- W4214749209 hasAuthorship W4214749209A5065679716 @default.
- W4214749209 hasAuthorship W4214749209A5069765960 @default.
- W4214749209 hasConcept C124504099 @default.
- W4214749209 hasConcept C127162648 @default.
- W4214749209 hasConcept C138885662 @default.
- W4214749209 hasConcept C153180895 @default.
- W4214749209 hasConcept C154945302 @default.
- W4214749209 hasConcept C205203396 @default.
- W4214749209 hasConcept C2776401178 @default.
- W4214749209 hasConcept C31258907 @default.
- W4214749209 hasConcept C31972630 @default.
- W4214749209 hasConcept C41008148 @default.
- W4214749209 hasConcept C41895202 @default.
- W4214749209 hasConcept C70437156 @default.
- W4214749209 hasConcept C83665646 @default.
- W4214749209 hasConcept C89600930 @default.
- W4214749209 hasConceptScore W4214749209C124504099 @default.
- W4214749209 hasConceptScore W4214749209C127162648 @default.
- W4214749209 hasConceptScore W4214749209C138885662 @default.
- W4214749209 hasConceptScore W4214749209C153180895 @default.
- W4214749209 hasConceptScore W4214749209C154945302 @default.
- W4214749209 hasConceptScore W4214749209C205203396 @default.
- W4214749209 hasConceptScore W4214749209C2776401178 @default.
- W4214749209 hasConceptScore W4214749209C31258907 @default.
- W4214749209 hasConceptScore W4214749209C31972630 @default.
- W4214749209 hasConceptScore W4214749209C41008148 @default.
- W4214749209 hasConceptScore W4214749209C41895202 @default.
- W4214749209 hasConceptScore W4214749209C70437156 @default.
- W4214749209 hasConceptScore W4214749209C83665646 @default.
- W4214749209 hasConceptScore W4214749209C89600930 @default.
- W4214749209 hasFunder F4320321001 @default.
- W4214749209 hasFunder F4320321133 @default.
- W4214749209 hasFunder F4320322847 @default.
- W4214749209 hasIssue "7" @default.
- W4214749209 hasLocation W42147492091 @default.
- W4214749209 hasLocation W42147492092 @default.
- W4214749209 hasOpenAccess W4214749209 @default.
- W4214749209 hasPrimaryLocation W42147492091 @default.
- W4214749209 hasRelatedWork W1669643531 @default.
- W4214749209 hasRelatedWork W2005437358 @default.
- W4214749209 hasRelatedWork W2008656436 @default.
- W4214749209 hasRelatedWork W2023558673 @default.
- W4214749209 hasRelatedWork W2110230079 @default.
- W4214749209 hasRelatedWork W2134924024 @default.
- W4214749209 hasRelatedWork W2354804986 @default.
- W4214749209 hasRelatedWork W2517104666 @default.
- W4214749209 hasRelatedWork W2883502031 @default.
- W4214749209 hasRelatedWork W2950524887 @default.
- W4214749209 hasVolume "26" @default.
- W4214749209 isParatext "false" @default.
- W4214749209 isRetracted "false" @default.