Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214752011> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4214752011 endingPage "76" @default.
- W4214752011 startingPage "65" @default.
- W4214752011 abstract "Brain tumors are prevalent and aggressive disease, with a relatively short life expectancy in their most severe form. Thus, treatment planning is an important element in improving patient quality of life. In general, image techniques such as computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound imaging are used to examine tumors in the brain, lung, liver, and breast. MRI scans are used in this study to diagnose brain tumors. As a result, a reliable and automated classification technique is required to prevent death. Automatic brain tumor detection using convolutional neural networks (CNN) classification is proposed in this chapter. Small kernels are used to conduct the deeper architectural design. In machine learning, brain tumor classification is done by using a binary classifier to detect brain tumors from MRI scan images. In this chapter, transfer learning is used to build the classifier, achieving a good accuracy and visualizing the model's overall performance." @default.
- W4214752011 created "2022-03-02" @default.
- W4214752011 creator A5032123223 @default.
- W4214752011 creator A5080131392 @default.
- W4214752011 date "2022-01-01" @default.
- W4214752011 modified "2023-10-16" @default.
- W4214752011 title "Machine Learning in Cyber Physical Systems for Healthcare" @default.
- W4214752011 cites W2123498585 @default.
- W4214752011 cites W2310992461 @default.
- W4214752011 cites W2610996315 @default.
- W4214752011 cites W2756055686 @default.
- W4214752011 cites W2916771055 @default.
- W4214752011 cites W3003624604 @default.
- W4214752011 cites W3013681527 @default.
- W4214752011 cites W3014247536 @default.
- W4214752011 cites W3081224875 @default.
- W4214752011 cites W4207083970 @default.
- W4214752011 cites W940791373 @default.
- W4214752011 doi "https://doi.org/10.4018/978-1-7998-9308-0.ch005" @default.
- W4214752011 hasPublicationYear "2022" @default.
- W4214752011 type Work @default.
- W4214752011 citedByCount "2" @default.
- W4214752011 countsByYear W42147520112022 @default.
- W4214752011 countsByYear W42147520112023 @default.
- W4214752011 crossrefType "book-chapter" @default.
- W4214752011 hasAuthorship W4214752011A5032123223 @default.
- W4214752011 hasAuthorship W4214752011A5080131392 @default.
- W4214752011 hasConcept C119857082 @default.
- W4214752011 hasConcept C126838900 @default.
- W4214752011 hasConcept C142724271 @default.
- W4214752011 hasConcept C143409427 @default.
- W4214752011 hasConcept C150899416 @default.
- W4214752011 hasConcept C153180895 @default.
- W4214752011 hasConcept C154945302 @default.
- W4214752011 hasConcept C2779130545 @default.
- W4214752011 hasConcept C41008148 @default.
- W4214752011 hasConcept C71924100 @default.
- W4214752011 hasConcept C81363708 @default.
- W4214752011 hasConceptScore W4214752011C119857082 @default.
- W4214752011 hasConceptScore W4214752011C126838900 @default.
- W4214752011 hasConceptScore W4214752011C142724271 @default.
- W4214752011 hasConceptScore W4214752011C143409427 @default.
- W4214752011 hasConceptScore W4214752011C150899416 @default.
- W4214752011 hasConceptScore W4214752011C153180895 @default.
- W4214752011 hasConceptScore W4214752011C154945302 @default.
- W4214752011 hasConceptScore W4214752011C2779130545 @default.
- W4214752011 hasConceptScore W4214752011C41008148 @default.
- W4214752011 hasConceptScore W4214752011C71924100 @default.
- W4214752011 hasConceptScore W4214752011C81363708 @default.
- W4214752011 hasLocation W42147520111 @default.
- W4214752011 hasOpenAccess W4214752011 @default.
- W4214752011 hasPrimaryLocation W42147520111 @default.
- W4214752011 hasRelatedWork W2738221750 @default.
- W4214752011 hasRelatedWork W2909857627 @default.
- W4214752011 hasRelatedWork W2972069047 @default.
- W4214752011 hasRelatedWork W3012393889 @default.
- W4214752011 hasRelatedWork W3014041368 @default.
- W4214752011 hasRelatedWork W3018421652 @default.
- W4214752011 hasRelatedWork W3021430260 @default.
- W4214752011 hasRelatedWork W3091976719 @default.
- W4214752011 hasRelatedWork W3211334395 @default.
- W4214752011 hasRelatedWork W4287009405 @default.
- W4214752011 isParatext "false" @default.
- W4214752011 isRetracted "false" @default.
- W4214752011 workType "book-chapter" @default.