Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214755046> ?p ?o ?g. }
- W4214755046 endingPage "122689" @default.
- W4214755046 startingPage "122689" @default.
- W4214755046 abstract "• An adjoint-based shape optimization method minimized the drag of a surface heat exchanger for an array of heat transfer constraint values. • Optimal surface heat exchanger geometry changed from smooth to finned as the heat load constraint increased. • The designs optimized using the conjugate heat transfer model were smaller than those optimized with the convection-only model. • The fins designed by the optimizer had a forward tilt to reduce the aft adverse-pressure gradient and consequently separation. Electrified aircraft benefit from the versatile ways electric motors can be integrated with an airframe. However, thermal management is needed to move waste heat out of the motors because the heat is not expelled with the exhaust as in a conventional engine. Plate-fin, fin, and surface heat exchangers are incorporated as air-side heat exchangers for electrified aircraft thermal management systems. Typically, analytic tools are used to design heat exchangers within these categories. However, analytic tools lack the fidelity required for detailed shaping and assessment of general heat exchanger configurations. Tools based on first principles, such as finite element analysis or computational fluid dynamics, can verify heat exchanger performance but are too costly to use in a manual design loop. Shape optimization can be used with first-principles-based models to design heat exchangers without limiting the geometry to those previously well studied. In this work, we apply this methodology to design a heat sink for the high-lift motor of an electric technology demonstrator, the X-57 Maxwell. We use a gradient-based optimizer to modify the thickness distribution of the heat sink to find designs that minimize drag while meeting the heat load constraint. To model the heat transfer from the motor, we use both convection-only and conjugate heat transfer models and compare the resulting differences in the optimized shapes. We found that the convection-only model under-predicted heat rejection and thus led to larger than necessary heat sinks when used in optimization. To study the effect of the heat load on the design, we compare the heat sinks designed for the baseline motor and heat sinks designed for less efficient motors. Our study results show how the heat exchanger’s geometry changes from uniformly thick to designs with fins as the heat load increases. Furthermore, we found that the variation in drag across designs is driven by differences in the pressure drag due to flow separation. Finally, we conclude with a comparison of the optimized designs to those representing more simple fin designs and find that the optimized designs have fins that are shifted forward to reduce the adverse pressure gradient, which mitigates separation on the aft part of the fin. The developed shape optimization method could also be applied to improve other heat exchangers, specifically those designed to reject relatively low amounts of heat." @default.
- W4214755046 created "2022-03-02" @default.
- W4214755046 creator A5002602051 @default.
- W4214755046 creator A5022893650 @default.
- W4214755046 creator A5071105578 @default.
- W4214755046 date "2022-06-01" @default.
- W4214755046 modified "2023-10-05" @default.
- W4214755046 title "Aerodynamic shape optimization of an electric aircraft motor surface heat exchanger with conjugate heat transfer constraint" @default.
- W4214755046 cites W1963494842 @default.
- W4214755046 cites W1969551552 @default.
- W4214755046 cites W1978809294 @default.
- W4214755046 cites W1980998330 @default.
- W4214755046 cites W1992671845 @default.
- W4214755046 cites W2003662908 @default.
- W4214755046 cites W2022144657 @default.
- W4214755046 cites W2024040438 @default.
- W4214755046 cites W2054148923 @default.
- W4214755046 cites W2057838500 @default.
- W4214755046 cites W2078452083 @default.
- W4214755046 cites W2094365847 @default.
- W4214755046 cites W2096619076 @default.
- W4214755046 cites W2096756561 @default.
- W4214755046 cites W2346824877 @default.
- W4214755046 cites W2410876388 @default.
- W4214755046 cites W2419596833 @default.
- W4214755046 cites W2519609256 @default.
- W4214755046 cites W2536232443 @default.
- W4214755046 cites W2568427828 @default.
- W4214755046 cites W2597080064 @default.
- W4214755046 cites W2609466678 @default.
- W4214755046 cites W2729639315 @default.
- W4214755046 cites W2783228353 @default.
- W4214755046 cites W2791048158 @default.
- W4214755046 cites W2804325720 @default.
- W4214755046 cites W2808993026 @default.
- W4214755046 cites W2885333181 @default.
- W4214755046 cites W2895205716 @default.
- W4214755046 cites W2898287496 @default.
- W4214755046 cites W2918809447 @default.
- W4214755046 cites W2952865777 @default.
- W4214755046 cites W2954490862 @default.
- W4214755046 cites W2971552201 @default.
- W4214755046 cites W2997557827 @default.
- W4214755046 cites W3036238768 @default.
- W4214755046 cites W3092650631 @default.
- W4214755046 cites W3093847671 @default.
- W4214755046 cites W3110102441 @default.
- W4214755046 cites W3131107952 @default.
- W4214755046 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2022.122689" @default.
- W4214755046 hasPublicationYear "2022" @default.
- W4214755046 type Work @default.
- W4214755046 citedByCount "7" @default.
- W4214755046 countsByYear W42147550462022 @default.
- W4214755046 countsByYear W42147550462023 @default.
- W4214755046 crossrefType "journal-article" @default.
- W4214755046 hasAuthorship W4214755046A5002602051 @default.
- W4214755046 hasAuthorship W4214755046A5022893650 @default.
- W4214755046 hasAuthorship W4214755046A5071105578 @default.
- W4214755046 hasBestOaLocation W42147550461 @default.
- W4214755046 hasConcept C107706546 @default.
- W4214755046 hasConcept C118227150 @default.
- W4214755046 hasConcept C121332964 @default.
- W4214755046 hasConcept C127413603 @default.
- W4214755046 hasConcept C186937647 @default.
- W4214755046 hasConcept C192562407 @default.
- W4214755046 hasConcept C32375409 @default.
- W4214755046 hasConcept C39420092 @default.
- W4214755046 hasConcept C41008148 @default.
- W4214755046 hasConcept C48632124 @default.
- W4214755046 hasConcept C50517652 @default.
- W4214755046 hasConcept C57879066 @default.
- W4214755046 hasConcept C78519656 @default.
- W4214755046 hasConcept C91721477 @default.
- W4214755046 hasConceptScore W4214755046C107706546 @default.
- W4214755046 hasConceptScore W4214755046C118227150 @default.
- W4214755046 hasConceptScore W4214755046C121332964 @default.
- W4214755046 hasConceptScore W4214755046C127413603 @default.
- W4214755046 hasConceptScore W4214755046C186937647 @default.
- W4214755046 hasConceptScore W4214755046C192562407 @default.
- W4214755046 hasConceptScore W4214755046C32375409 @default.
- W4214755046 hasConceptScore W4214755046C39420092 @default.
- W4214755046 hasConceptScore W4214755046C41008148 @default.
- W4214755046 hasConceptScore W4214755046C48632124 @default.
- W4214755046 hasConceptScore W4214755046C50517652 @default.
- W4214755046 hasConceptScore W4214755046C57879066 @default.
- W4214755046 hasConceptScore W4214755046C78519656 @default.
- W4214755046 hasConceptScore W4214755046C91721477 @default.
- W4214755046 hasLocation W42147550461 @default.
- W4214755046 hasOpenAccess W4214755046 @default.
- W4214755046 hasPrimaryLocation W42147550461 @default.
- W4214755046 hasRelatedWork W10315082 @default.
- W4214755046 hasRelatedWork W183913381 @default.
- W4214755046 hasRelatedWork W2045604782 @default.
- W4214755046 hasRelatedWork W2358734802 @default.
- W4214755046 hasRelatedWork W2554969706 @default.
- W4214755046 hasRelatedWork W2945861952 @default.
- W4214755046 hasRelatedWork W3118360099 @default.
- W4214755046 hasRelatedWork W3178729322 @default.