Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214758431> ?p ?o ?g. }
- W4214758431 endingPage "24720" @default.
- W4214758431 startingPage "24704" @default.
- W4214758431 abstract "Harmful exposure to erythemally-effective ultraviolet radiation (UVR) poses high health risks such as malignant keratinocyte cancers and eye-related diseases. Delivering short-term forecasts of the solar ultraviolet index (UVI) is an effective way to advise UVR exposure information to the public at risk. This research reports on a novel framework built to forecast UVI, integrating antecedent lagged memory of cloud statistical properties and the solar zenith angle (SZA). To produce the forecasts at multi-step horizon we design a 3-phase hybrid convolutional long short-term memory network (W-O-convLSTM) model, validated with Queensland-based datasets in near real-time ( <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>i.e</i> ., 10-minute, 20-minute, 30-minute and 1 hour forecast horizon). Our approach in optimizing the performance also entails a robust selective filtering method using the BorutaShap algorithm, data decomposition with stationary wavelet transformation and hyperparameter optimization using the Optuna algorithm. We assess the performance of the proposed W-O-convLSTM model alongside the baseline and benchmark models. The captured results, through statistical metrics and visual infographics, elucidate the superior performance of the objective model in short-term UVI forecasting. For instance, at a 10-minute forecast horizon, our objective model yields a relatively high correlation coefficient of ~0.961 in the autumn, 0.909 in the summer, 0.926 in the spring and 0.936 in the winter season. Overall, the proposed O-convLSTM model outperforms its competing counterpart models for all forecast horizons with the lowest absolute forecast error. The robustness of our newly proposed model avers its practical utility in delivering sun-protection behavior recommendations that can mitigate UV-exposure-related public health risk. We also recommend that future integration of aerosol and ozone effects with cloud cover data can enhance our forecasting framework for wider applications in solar energy or skin health monitoring systems." @default.
- W4214758431 created "2022-03-02" @default.
- W4214758431 creator A5003685747 @default.
- W4214758431 creator A5008724716 @default.
- W4214758431 creator A5031932812 @default.
- W4214758431 creator A5043334558 @default.
- W4214758431 creator A5065141057 @default.
- W4214758431 creator A5088810965 @default.
- W4214758431 date "2022-01-01" @default.
- W4214758431 modified "2023-10-03" @default.
- W4214758431 title "Cloud Affected Solar UV Prediction With Three-Phase Wavelet Hybrid Convolutional Long Short-Term Memory Network Multi-Step Forecast System" @default.
- W4214758431 cites W1801389248 @default.
- W4214758431 cites W1934894057 @default.
- W4214758431 cites W1963827414 @default.
- W4214758431 cites W1994295937 @default.
- W4214758431 cites W2006219759 @default.
- W4214758431 cites W2016452153 @default.
- W4214758431 cites W2025897721 @default.
- W4214758431 cites W2030754173 @default.
- W4214758431 cites W2050791756 @default.
- W4214758431 cites W2055338991 @default.
- W4214758431 cites W2071024509 @default.
- W4214758431 cites W2082139691 @default.
- W4214758431 cites W2143481518 @default.
- W4214758431 cites W2159196243 @default.
- W4214758431 cites W2274744025 @default.
- W4214758431 cites W2285118198 @default.
- W4214758431 cites W2366440800 @default.
- W4214758431 cites W2398936495 @default.
- W4214758431 cites W2501250788 @default.
- W4214758431 cites W2592903613 @default.
- W4214758431 cites W2599971942 @default.
- W4214758431 cites W2606042658 @default.
- W4214758431 cites W2750853837 @default.
- W4214758431 cites W2761145419 @default.
- W4214758431 cites W2793151193 @default.
- W4214758431 cites W2937772171 @default.
- W4214758431 cites W2942490069 @default.
- W4214758431 cites W2949676527 @default.
- W4214758431 cites W2951458873 @default.
- W4214758431 cites W2954174953 @default.
- W4214758431 cites W2963928450 @default.
- W4214758431 cites W3015280040 @default.
- W4214758431 cites W3022211274 @default.
- W4214758431 cites W3023250003 @default.
- W4214758431 cites W3036309913 @default.
- W4214758431 cites W3041929891 @default.
- W4214758431 cites W3047313329 @default.
- W4214758431 cites W3089687722 @default.
- W4214758431 cites W3092445480 @default.
- W4214758431 cites W3104791420 @default.
- W4214758431 cites W3127771660 @default.
- W4214758431 cites W3133956142 @default.
- W4214758431 cites W3136145688 @default.
- W4214758431 cites W3136213226 @default.
- W4214758431 cites W3167907675 @default.
- W4214758431 cites W3197006819 @default.
- W4214758431 cites W3212268608 @default.
- W4214758431 cites W3213482556 @default.
- W4214758431 cites W4211115699 @default.
- W4214758431 cites W4292671038 @default.
- W4214758431 doi "https://doi.org/10.1109/access.2022.3153475" @default.
- W4214758431 hasPublicationYear "2022" @default.
- W4214758431 type Work @default.
- W4214758431 citedByCount "11" @default.
- W4214758431 countsByYear W42147584312022 @default.
- W4214758431 countsByYear W42147584312023 @default.
- W4214758431 crossrefType "journal-article" @default.
- W4214758431 hasAuthorship W4214758431A5003685747 @default.
- W4214758431 hasAuthorship W4214758431A5008724716 @default.
- W4214758431 hasAuthorship W4214758431A5031932812 @default.
- W4214758431 hasAuthorship W4214758431A5043334558 @default.
- W4214758431 hasAuthorship W4214758431A5065141057 @default.
- W4214758431 hasAuthorship W4214758431A5088810965 @default.
- W4214758431 hasBestOaLocation W42147584311 @default.
- W4214758431 hasConcept C111919701 @default.
- W4214758431 hasConcept C121332964 @default.
- W4214758431 hasConcept C13280743 @default.
- W4214758431 hasConcept C153294291 @default.
- W4214758431 hasConcept C154945302 @default.
- W4214758431 hasConcept C185798385 @default.
- W4214758431 hasConcept C205649164 @default.
- W4214758431 hasConcept C2781013037 @default.
- W4214758431 hasConcept C41008148 @default.
- W4214758431 hasConcept C61797465 @default.
- W4214758431 hasConcept C62520636 @default.
- W4214758431 hasConcept C79974875 @default.
- W4214758431 hasConcept C81363708 @default.
- W4214758431 hasConceptScore W4214758431C111919701 @default.
- W4214758431 hasConceptScore W4214758431C121332964 @default.
- W4214758431 hasConceptScore W4214758431C13280743 @default.
- W4214758431 hasConceptScore W4214758431C153294291 @default.
- W4214758431 hasConceptScore W4214758431C154945302 @default.
- W4214758431 hasConceptScore W4214758431C185798385 @default.
- W4214758431 hasConceptScore W4214758431C205649164 @default.
- W4214758431 hasConceptScore W4214758431C2781013037 @default.
- W4214758431 hasConceptScore W4214758431C41008148 @default.
- W4214758431 hasConceptScore W4214758431C61797465 @default.