Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214773122> ?p ?o ?g. }
- W4214773122 endingPage "563" @default.
- W4214773122 startingPage "551" @default.
- W4214773122 abstract "Abstract In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide information on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)–based algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral artery stroke. These results were compared to volumes reported by widely used CT perfusion–based RAPID software (IschemaView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44–0.63), precision 0.69 (0.60–0.76), and Sørensen–Dice coefficient 0.61 (0.52–0.67). Stroke/nonstroke differentiation accuracy 0.88 (0.81–0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately strong correlation to RAPID-reported T max > 10 s volumes (Pearson’s r = 0.76 (0.58–0.86)). The results suggest that detecting anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with physiological knowledge to rule out false positives." @default.
- W4214773122 created "2022-03-02" @default.
- W4214773122 creator A5007069710 @default.
- W4214773122 creator A5028801607 @default.
- W4214773122 creator A5066676105 @default.
- W4214773122 creator A5069339666 @default.
- W4214773122 creator A5079286325 @default.
- W4214773122 creator A5086114424 @default.
- W4214773122 creator A5091615721 @default.
- W4214773122 date "2022-02-24" @default.
- W4214773122 modified "2023-10-17" @default.
- W4214773122 title "Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study" @default.
- W4214773122 cites W1915761309 @default.
- W4214773122 cites W2023291603 @default.
- W4214773122 cites W2026616100 @default.
- W4214773122 cites W2065423367 @default.
- W4214773122 cites W2086121111 @default.
- W4214773122 cites W2097110160 @default.
- W4214773122 cites W2127890285 @default.
- W4214773122 cites W2133287637 @default.
- W4214773122 cites W2156436652 @default.
- W4214773122 cites W2301358467 @default.
- W4214773122 cites W2304388513 @default.
- W4214773122 cites W2484736472 @default.
- W4214773122 cites W2489968831 @default.
- W4214773122 cites W2509609015 @default.
- W4214773122 cites W2592929672 @default.
- W4214773122 cites W2594709266 @default.
- W4214773122 cites W2626711511 @default.
- W4214773122 cites W2759511880 @default.
- W4214773122 cites W2783818340 @default.
- W4214773122 cites W2800924554 @default.
- W4214773122 cites W2806069072 @default.
- W4214773122 cites W2809254203 @default.
- W4214773122 cites W2912810649 @default.
- W4214773122 cites W2921613140 @default.
- W4214773122 cites W2945717944 @default.
- W4214773122 cites W2946515371 @default.
- W4214773122 cites W2957996027 @default.
- W4214773122 cites W2963361270 @default.
- W4214773122 cites W2963703197 @default.
- W4214773122 cites W2968247392 @default.
- W4214773122 cites W2975101641 @default.
- W4214773122 cites W2979307665 @default.
- W4214773122 cites W2981941315 @default.
- W4214773122 cites W2981995213 @default.
- W4214773122 cites W3006844894 @default.
- W4214773122 doi "https://doi.org/10.1007/s10278-022-00611-0" @default.
- W4214773122 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35211838" @default.
- W4214773122 hasPublicationYear "2022" @default.
- W4214773122 type Work @default.
- W4214773122 citedByCount "3" @default.
- W4214773122 countsByYear W42147731222023 @default.
- W4214773122 crossrefType "journal-article" @default.
- W4214773122 hasAuthorship W4214773122A5007069710 @default.
- W4214773122 hasAuthorship W4214773122A5028801607 @default.
- W4214773122 hasAuthorship W4214773122A5066676105 @default.
- W4214773122 hasAuthorship W4214773122A5069339666 @default.
- W4214773122 hasAuthorship W4214773122A5079286325 @default.
- W4214773122 hasAuthorship W4214773122A5086114424 @default.
- W4214773122 hasAuthorship W4214773122A5091615721 @default.
- W4214773122 hasBestOaLocation W42147731221 @default.
- W4214773122 hasConcept C126322002 @default.
- W4214773122 hasConcept C126838900 @default.
- W4214773122 hasConcept C127413603 @default.
- W4214773122 hasConcept C142724271 @default.
- W4214773122 hasConcept C154945302 @default.
- W4214773122 hasConcept C2775841333 @default.
- W4214773122 hasConcept C2780643987 @default.
- W4214773122 hasConcept C2780645631 @default.
- W4214773122 hasConcept C2781156865 @default.
- W4214773122 hasConcept C2781347138 @default.
- W4214773122 hasConcept C2989005 @default.
- W4214773122 hasConcept C41008148 @default.
- W4214773122 hasConcept C54170458 @default.
- W4214773122 hasConcept C541997718 @default.
- W4214773122 hasConcept C64869954 @default.
- W4214773122 hasConcept C71924100 @default.
- W4214773122 hasConcept C78519656 @default.
- W4214773122 hasConcept C81363708 @default.
- W4214773122 hasConceptScore W4214773122C126322002 @default.
- W4214773122 hasConceptScore W4214773122C126838900 @default.
- W4214773122 hasConceptScore W4214773122C127413603 @default.
- W4214773122 hasConceptScore W4214773122C142724271 @default.
- W4214773122 hasConceptScore W4214773122C154945302 @default.
- W4214773122 hasConceptScore W4214773122C2775841333 @default.
- W4214773122 hasConceptScore W4214773122C2780643987 @default.
- W4214773122 hasConceptScore W4214773122C2780645631 @default.
- W4214773122 hasConceptScore W4214773122C2781156865 @default.
- W4214773122 hasConceptScore W4214773122C2781347138 @default.
- W4214773122 hasConceptScore W4214773122C2989005 @default.
- W4214773122 hasConceptScore W4214773122C41008148 @default.
- W4214773122 hasConceptScore W4214773122C54170458 @default.
- W4214773122 hasConceptScore W4214773122C541997718 @default.
- W4214773122 hasConceptScore W4214773122C64869954 @default.
- W4214773122 hasConceptScore W4214773122C71924100 @default.
- W4214773122 hasConceptScore W4214773122C78519656 @default.
- W4214773122 hasConceptScore W4214773122C81363708 @default.