Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214773312> ?p ?o ?g. }
- W4214773312 endingPage "14245" @default.
- W4214773312 startingPage "14217" @default.
- W4214773312 abstract "As everyone knows that in today's time Artificial Intelligence, Machine Learning and Deep Learning are being used extensively and generally researchers are thinking of using them everywhere. At the same time, we are also seeing that the second wave of corona has wreaked havoc in India. More than 4 lakh cases are coming in 24 h. In the meantime, news came that a new deadly fungus has come, which doctors have named Mucormycosis (Black fungus). This fungus also spread rapidly in many states, due to which states have declared this disease as an epidemic. It has become very important to find a cure for this life-threatening fungus by taking the help of our today's devices and technology such as artificial intelligence, data learning. It was found that the CT-Scan has much more adequate information and delivers greater evaluation validity than the chest X-Ray. After that the steps of Image processing such as pre-processing, segmentation, all these were surveyed in which it was found that accuracy score for the deep features retrieved from the ResNet50 model and SVM classifier using the Linear kernel function was 94.7%, which was the highest of all the findings. Also studied about Deep Belief Network (DBN) that how easy it can be to diagnose a life-threatening infection like fungus. Then a survey explained how computer vision helped in the corona era, in the same way it would help in epidemics like Mucormycosis." @default.
- W4214773312 created "2022-03-02" @default.
- W4214773312 creator A5002762945 @default.
- W4214773312 creator A5090995849 @default.
- W4214773312 date "2022-02-25" @default.
- W4214773312 modified "2023-09-29" @default.
- W4214773312 title "Epidemiological Mucormycosis treatment and diagnosis challenges using the adaptive properties of computer vision techniques based approach: a review" @default.
- W4214773312 cites W1563088657 @default.
- W4214773312 cites W168227540 @default.
- W4214773312 cites W1884191083 @default.
- W4214773312 cites W1939967508 @default.
- W4214773312 cites W1990820189 @default.
- W4214773312 cites W2006755983 @default.
- W4214773312 cites W2008008156 @default.
- W4214773312 cites W2031997149 @default.
- W4214773312 cites W2035784046 @default.
- W4214773312 cites W2044465660 @default.
- W4214773312 cites W2080668963 @default.
- W4214773312 cites W2097117768 @default.
- W4214773312 cites W2118246710 @default.
- W4214773312 cites W2121947440 @default.
- W4214773312 cites W2151103935 @default.
- W4214773312 cites W2194775991 @default.
- W4214773312 cites W2280420890 @default.
- W4214773312 cites W2329826697 @default.
- W4214773312 cites W2347064614 @default.
- W4214773312 cites W2366765237 @default.
- W4214773312 cites W2610330064 @default.
- W4214773312 cites W2624881194 @default.
- W4214773312 cites W2733093794 @default.
- W4214773312 cites W2735606383 @default.
- W4214773312 cites W2738283244 @default.
- W4214773312 cites W2765669952 @default.
- W4214773312 cites W2809504579 @default.
- W4214773312 cites W2887280559 @default.
- W4214773312 cites W2907386579 @default.
- W4214773312 cites W2913292358 @default.
- W4214773312 cites W2927193036 @default.
- W4214773312 cites W2942231644 @default.
- W4214773312 cites W2945759189 @default.
- W4214773312 cites W2946740074 @default.
- W4214773312 cites W2949740661 @default.
- W4214773312 cites W2963150697 @default.
- W4214773312 cites W2982587597 @default.
- W4214773312 cites W3004227146 @default.
- W4214773312 cites W3007184303 @default.
- W4214773312 cites W3011118928 @default.
- W4214773312 cites W3011149445 @default.
- W4214773312 cites W3011414569 @default.
- W4214773312 cites W3012602559 @default.
- W4214773312 cites W3013467637 @default.
- W4214773312 cites W3014924062 @default.
- W4214773312 cites W3037538421 @default.
- W4214773312 cites W3042112366 @default.
- W4214773312 cites W3044294576 @default.
- W4214773312 cites W3083753334 @default.
- W4214773312 cites W3083953499 @default.
- W4214773312 cites W3089168916 @default.
- W4214773312 cites W3096956107 @default.
- W4214773312 cites W3102469298 @default.
- W4214773312 cites W3105081694 @default.
- W4214773312 cites W3105153358 @default.
- W4214773312 cites W3119797326 @default.
- W4214773312 cites W3120595226 @default.
- W4214773312 cites W3123705163 @default.
- W4214773312 cites W3126956414 @default.
- W4214773312 cites W3128189270 @default.
- W4214773312 cites W3129576291 @default.
- W4214773312 cites W3130190651 @default.
- W4214773312 cites W3132012119 @default.
- W4214773312 cites W3133191822 @default.
- W4214773312 cites W3134334939 @default.
- W4214773312 cites W3135243128 @default.
- W4214773312 cites W3138558221 @default.
- W4214773312 cites W3139414613 @default.
- W4214773312 cites W3141152660 @default.
- W4214773312 cites W3141507850 @default.
- W4214773312 cites W3158855104 @default.
- W4214773312 cites W3161997449 @default.
- W4214773312 cites W3162351260 @default.
- W4214773312 cites W3164363806 @default.
- W4214773312 cites W3166850464 @default.
- W4214773312 cites W3168156287 @default.
- W4214773312 cites W3181235680 @default.
- W4214773312 cites W3183937587 @default.
- W4214773312 cites W3184157281 @default.
- W4214773312 cites W3193718906 @default.
- W4214773312 cites W3196031161 @default.
- W4214773312 cites W4226074104 @default.
- W4214773312 cites W4239510810 @default.
- W4214773312 doi "https://doi.org/10.1007/s11042-022-12450-w" @default.
- W4214773312 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35233180" @default.
- W4214773312 hasPublicationYear "2022" @default.
- W4214773312 type Work @default.
- W4214773312 citedByCount "2" @default.
- W4214773312 countsByYear W42147733122022 @default.
- W4214773312 countsByYear W42147733122023 @default.
- W4214773312 crossrefType "journal-article" @default.