Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214774513> ?p ?o ?g. }
- W4214774513 endingPage "5632" @default.
- W4214774513 startingPage "5619" @default.
- W4214774513 abstract "In the Internet of Things (IoT) environment, the services provided by the connected objects are published as services through the web. This allows to machines to interact between them and, makes the IoT services composition possible. However, the vast proliferation of smart object generates services with the same functionalities but different in terms of quality of services (QoS) proprieties. This makes the satisfaction of the user requirements often complex and a NP-hard problem. Indeed, respecting the QoS constraints (user preferences in terms of QoS) is a challenge, due to the high number of candidate services for the composition. This challenge consists of selecting the most appropriate services so that the composite service must meet both the functional and the non-functional requirements of the user. To deal with this challenge, we propose an approach based on Genetic Algorithms (GA) and Neural Networks (NN) for QoS-aware IoT Services Composition in the context of large-scale environments. The combination between GA and NN allows finding the quasi-optimal IoT service composition. This latter is based on global QoS optimization. To reach this objective, the QoS intervals are decomposed into M QoS-levels to engage them into the theoretical composition. Then, the proposed first GA is used to obtain the ideal theoretical composition with an overall QoS optimization. Afterward, the proposed NN is used to eliminate the inappropriate concrete IoT services, and retain only the services having the same categories of the atomic theoretical services composing the ideal theoretical composition. This allows us to optimize the search space as well as the execution time. Finally, we apply the second GA on the concrete services of the retained categories, in order to obtain the IoT service concrete composition with an overall QoS optimization. The simulation results show that the proposed approach has the best composition time, the best Hypervolume indicator and the best compositional optimality compared to SC-FLA, Improved GA and MGA approaches. On another side, it has almost the same performances compared to TS-QCA and, it finds the near-optimal composition in a very short time compared to PSA, which is an optimal approach. Thus, the obtained results show the effectiveness of our approach." @default.
- W4214774513 created "2022-03-02" @default.
- W4214774513 creator A5032534357 @default.
- W4214774513 creator A5044478313 @default.
- W4214774513 creator A5065898829 @default.
- W4214774513 date "2022-09-01" @default.
- W4214774513 modified "2023-09-29" @default.
- W4214774513 title "An approach based on genetic algorithms and neural networks for QoS-aware IoT services composition" @default.
- W4214774513 cites W1837982953 @default.
- W4214774513 cites W1973682245 @default.
- W4214774513 cites W1976969188 @default.
- W4214774513 cites W2031293658 @default.
- W4214774513 cites W2057031641 @default.
- W4214774513 cites W2132670357 @default.
- W4214774513 cites W2141880113 @default.
- W4214774513 cites W2171075212 @default.
- W4214774513 cites W2192583762 @default.
- W4214774513 cites W2207649084 @default.
- W4214774513 cites W2241118198 @default.
- W4214774513 cites W2273992975 @default.
- W4214774513 cites W2313273281 @default.
- W4214774513 cites W2332912335 @default.
- W4214774513 cites W2338772919 @default.
- W4214774513 cites W2507784904 @default.
- W4214774513 cites W2593833939 @default.
- W4214774513 cites W2595397349 @default.
- W4214774513 cites W2599436010 @default.
- W4214774513 cites W2736935917 @default.
- W4214774513 cites W2753331711 @default.
- W4214774513 cites W2756443034 @default.
- W4214774513 cites W2803721225 @default.
- W4214774513 cites W2808209474 @default.
- W4214774513 cites W2820671649 @default.
- W4214774513 cites W2884118832 @default.
- W4214774513 cites W2892611135 @default.
- W4214774513 cites W2899684045 @default.
- W4214774513 cites W2900337970 @default.
- W4214774513 cites W2905503927 @default.
- W4214774513 cites W2909269968 @default.
- W4214774513 cites W2921981915 @default.
- W4214774513 cites W3004823354 @default.
- W4214774513 cites W3011289650 @default.
- W4214774513 cites W3016981379 @default.
- W4214774513 cites W3104862664 @default.
- W4214774513 cites W3134806768 @default.
- W4214774513 cites W3183976931 @default.
- W4214774513 cites W3193706363 @default.
- W4214774513 cites W3203863635 @default.
- W4214774513 doi "https://doi.org/10.1016/j.jksuci.2022.02.012" @default.
- W4214774513 hasPublicationYear "2022" @default.
- W4214774513 type Work @default.
- W4214774513 citedByCount "3" @default.
- W4214774513 countsByYear W42147745132022 @default.
- W4214774513 countsByYear W42147745132023 @default.
- W4214774513 crossrefType "journal-article" @default.
- W4214774513 hasAuthorship W4214774513A5032534357 @default.
- W4214774513 hasAuthorship W4214774513A5044478313 @default.
- W4214774513 hasAuthorship W4214774513A5065898829 @default.
- W4214774513 hasConcept C111472728 @default.
- W4214774513 hasConcept C116537 @default.
- W4214774513 hasConcept C119857082 @default.
- W4214774513 hasConcept C120314980 @default.
- W4214774513 hasConcept C136264566 @default.
- W4214774513 hasConcept C136764020 @default.
- W4214774513 hasConcept C138885662 @default.
- W4214774513 hasConcept C151730666 @default.
- W4214774513 hasConcept C154945302 @default.
- W4214774513 hasConcept C162324750 @default.
- W4214774513 hasConcept C169761439 @default.
- W4214774513 hasConcept C2779343474 @default.
- W4214774513 hasConcept C2779530757 @default.
- W4214774513 hasConcept C2780378061 @default.
- W4214774513 hasConcept C2983385018 @default.
- W4214774513 hasConcept C31258907 @default.
- W4214774513 hasConcept C35578498 @default.
- W4214774513 hasConcept C40231798 @default.
- W4214774513 hasConcept C41008148 @default.
- W4214774513 hasConcept C41895202 @default.
- W4214774513 hasConcept C50644808 @default.
- W4214774513 hasConcept C5119721 @default.
- W4214774513 hasConcept C542858634 @default.
- W4214774513 hasConcept C81860439 @default.
- W4214774513 hasConcept C86803240 @default.
- W4214774513 hasConcept C8880873 @default.
- W4214774513 hasConceptScore W4214774513C111472728 @default.
- W4214774513 hasConceptScore W4214774513C116537 @default.
- W4214774513 hasConceptScore W4214774513C119857082 @default.
- W4214774513 hasConceptScore W4214774513C120314980 @default.
- W4214774513 hasConceptScore W4214774513C136264566 @default.
- W4214774513 hasConceptScore W4214774513C136764020 @default.
- W4214774513 hasConceptScore W4214774513C138885662 @default.
- W4214774513 hasConceptScore W4214774513C151730666 @default.
- W4214774513 hasConceptScore W4214774513C154945302 @default.
- W4214774513 hasConceptScore W4214774513C162324750 @default.
- W4214774513 hasConceptScore W4214774513C169761439 @default.
- W4214774513 hasConceptScore W4214774513C2779343474 @default.
- W4214774513 hasConceptScore W4214774513C2779530757 @default.
- W4214774513 hasConceptScore W4214774513C2780378061 @default.