Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214817290> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4214817290 abstract "Background: Dynamic magnetic resonance imaging (dMRI) plays an important role in cardiac perfusion and functional clinical exams. However, further applications are limited by the speed of data acquisition. Objective: A low-rank plus sparse decomposition approach is often introduced for reconstructing dynamic magnetic resonance imaging (dMRI) from highly under-sampling K-space data. In this paper, the reconstruction problem of DMR is transformed into a low-rank tensor plus sparse tensor recovery problem. Methods: A sequentially truncated higher-order singular value decomposition method is proposed to quickly approximate the low-rank tensor space structure and learn sparse component by adding a tensor kernel norm to the low-rank tensor and a norm to the sparse tensor to constrain the two parts at the same time. The optimization problem is solved by using the iterative soft-thresholding algorithm, therefore, under the premise of ensuring the accuracy of the data, the amount of computation can be effectively reduced. Results: Compared with the state-of-the-art methods, the experimental results show that the Conclusion: The multidimensional MRI time series is represented by tensor tool and decomposed into low rank tensor term and sparse tensor term. The low rank spatial structure is captured by the adaptive ST-HOSVD for fast approximation and the sparse component is constrained efficiently with a sparsity transform and l1 norm. The optimization problem is solved by an iterative soft-thresholding algorithm. Through extensive 3D and 4D dMRI experiments, it is demonstrated that our method can achieve superior reconstruction performance and efficiency compared with the other three state-of-the-art methods reported in the literature." @default.
- W4214817290 created "2022-03-05" @default.
- W4214817290 creator A5002822938 @default.
- W4214817290 creator A5020377697 @default.
- W4214817290 creator A5027287491 @default.
- W4214817290 creator A5031380748 @default.
- W4214817290 creator A5053992518 @default.
- W4214817290 creator A5066562420 @default.
- W4214817290 creator A5067652312 @default.
- W4214817290 date "2022-03-03" @default.
- W4214817290 modified "2023-10-02" @default.
- W4214817290 title "Accelerating Dynamic MRI Reconstruction Using Adaptive Sequentially Truncated Higher-Order Singular Value Decomposition" @default.
- W4214817290 doi "https://doi.org/10.2174/1573405618666220303101900" @default.
- W4214817290 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35240962" @default.
- W4214817290 hasPublicationYear "2022" @default.
- W4214817290 type Work @default.
- W4214817290 citedByCount "0" @default.
- W4214817290 crossrefType "journal-article" @default.
- W4214817290 hasAuthorship W4214817290A5002822938 @default.
- W4214817290 hasAuthorship W4214817290A5020377697 @default.
- W4214817290 hasAuthorship W4214817290A5027287491 @default.
- W4214817290 hasAuthorship W4214817290A5031380748 @default.
- W4214817290 hasAuthorship W4214817290A5053992518 @default.
- W4214817290 hasAuthorship W4214817290A5066562420 @default.
- W4214817290 hasAuthorship W4214817290A5067652312 @default.
- W4214817290 hasConcept C11413529 @default.
- W4214817290 hasConcept C114614502 @default.
- W4214817290 hasConcept C115961682 @default.
- W4214817290 hasConcept C126255220 @default.
- W4214817290 hasConcept C154945302 @default.
- W4214817290 hasConcept C155281189 @default.
- W4214817290 hasConcept C164226766 @default.
- W4214817290 hasConcept C17744445 @default.
- W4214817290 hasConcept C191178318 @default.
- W4214817290 hasConcept C191795146 @default.
- W4214817290 hasConcept C199539241 @default.
- W4214817290 hasConcept C202444582 @default.
- W4214817290 hasConcept C22789450 @default.
- W4214817290 hasConcept C33923547 @default.
- W4214817290 hasConcept C41008148 @default.
- W4214817290 hasConceptScore W4214817290C11413529 @default.
- W4214817290 hasConceptScore W4214817290C114614502 @default.
- W4214817290 hasConceptScore W4214817290C115961682 @default.
- W4214817290 hasConceptScore W4214817290C126255220 @default.
- W4214817290 hasConceptScore W4214817290C154945302 @default.
- W4214817290 hasConceptScore W4214817290C155281189 @default.
- W4214817290 hasConceptScore W4214817290C164226766 @default.
- W4214817290 hasConceptScore W4214817290C17744445 @default.
- W4214817290 hasConceptScore W4214817290C191178318 @default.
- W4214817290 hasConceptScore W4214817290C191795146 @default.
- W4214817290 hasConceptScore W4214817290C199539241 @default.
- W4214817290 hasConceptScore W4214817290C202444582 @default.
- W4214817290 hasConceptScore W4214817290C22789450 @default.
- W4214817290 hasConceptScore W4214817290C33923547 @default.
- W4214817290 hasConceptScore W4214817290C41008148 @default.
- W4214817290 hasLocation W42148172901 @default.
- W4214817290 hasLocation W42148172902 @default.
- W4214817290 hasOpenAccess W4214817290 @default.
- W4214817290 hasPrimaryLocation W42148172901 @default.
- W4214817290 hasRelatedWork W2033296278 @default.
- W4214817290 hasRelatedWork W2118165710 @default.
- W4214817290 hasRelatedWork W2163884930 @default.
- W4214817290 hasRelatedWork W2219073195 @default.
- W4214817290 hasRelatedWork W2891722575 @default.
- W4214817290 hasRelatedWork W2951489354 @default.
- W4214817290 hasRelatedWork W3016334469 @default.
- W4214817290 hasRelatedWork W3126937085 @default.
- W4214817290 hasRelatedWork W3202440455 @default.
- W4214817290 hasRelatedWork W4360996558 @default.
- W4214817290 hasVolume "18" @default.
- W4214817290 isParatext "false" @default.
- W4214817290 isRetracted "false" @default.
- W4214817290 workType "article" @default.