Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214823367> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4214823367 abstract "Agriculture plays a vital role in providing main source of food, income and employment to the rural people in economically developing countries. The major influencing factor which affects agriculture productivity is crop loss due to the plant diseases, which affects the production approximately 20 to 30%. To avoid such losses, conventional method has been done to identify the diseases but it is not accurate. Early and exact diagnosis of plant diseases is very important to avoid such losses caused by such diseases. But due to lack of proper cultivating knowledge, experience, and sense of disease prediction, sometimes those harvests and grains get harmed mostly or even totally. Obviously, that winds up with an enormous misfortune for the farmers and also for the financial development of the country. Thus, this paper tends to combine a piece of agriculture area with the help of Artificial Intelligence to reduce the loss due to infections of plant leaves. In order to solve this problem, we used the transfer learning models constructed with various CNN architectures like ResNet50, VGG19, InceptionV3, and ResNet152V2. We did experiments with these four methods on the standard cotton leaves dataset, to know which method gives the better performance in identifying cotton leaf diseases. Experimental results show that ResNet50, VGG19, InceptionV3, and ResNet152V2 are giving 75.76%, 87.64%, 96.46%, 98.36% respectively. Among the four models ResNet152V2 with parameters 60,380,648 gave more accuracy. So, this idea of using transfer learning method called ResNet152V2 for disease detection in plant is very useful and also gives more accuracy." @default.
- W4214823367 created "2022-03-05" @default.
- W4214823367 creator A5005466841 @default.
- W4214823367 creator A5013084769 @default.
- W4214823367 creator A5046260668 @default.
- W4214823367 creator A5085512711 @default.
- W4214823367 date "2021-11-01" @default.
- W4214823367 modified "2023-09-26" @default.
- W4214823367 title "Leaf Disease Identification: Enhanced Cotton Leaf Disease Identification Using Deep CNN Models" @default.
- W4214823367 cites W1523063368 @default.
- W4214823367 cites W2789255992 @default.
- W4214823367 cites W2980226421 @default.
- W4214823367 cites W3193425446 @default.
- W4214823367 doi "https://doi.org/10.1109/icissgt52025.2021.00016" @default.
- W4214823367 hasPublicationYear "2021" @default.
- W4214823367 type Work @default.
- W4214823367 citedByCount "3" @default.
- W4214823367 countsByYear W42148233672022 @default.
- W4214823367 crossrefType "proceedings-article" @default.
- W4214823367 hasAuthorship W4214823367A5005466841 @default.
- W4214823367 hasAuthorship W4214823367A5013084769 @default.
- W4214823367 hasAuthorship W4214823367A5046260668 @default.
- W4214823367 hasAuthorship W4214823367A5085512711 @default.
- W4214823367 hasConcept C116834253 @default.
- W4214823367 hasConcept C118518473 @default.
- W4214823367 hasConcept C119857082 @default.
- W4214823367 hasConcept C12713177 @default.
- W4214823367 hasConcept C127413603 @default.
- W4214823367 hasConcept C137580998 @default.
- W4214823367 hasConcept C142724271 @default.
- W4214823367 hasConcept C150903083 @default.
- W4214823367 hasConcept C154945302 @default.
- W4214823367 hasConcept C18903297 @default.
- W4214823367 hasConcept C2778767146 @default.
- W4214823367 hasConcept C2779134260 @default.
- W4214823367 hasConcept C3019235130 @default.
- W4214823367 hasConcept C41008148 @default.
- W4214823367 hasConcept C59822182 @default.
- W4214823367 hasConcept C6557445 @default.
- W4214823367 hasConcept C71924100 @default.
- W4214823367 hasConcept C86803240 @default.
- W4214823367 hasConcept C88463610 @default.
- W4214823367 hasConceptScore W4214823367C116834253 @default.
- W4214823367 hasConceptScore W4214823367C118518473 @default.
- W4214823367 hasConceptScore W4214823367C119857082 @default.
- W4214823367 hasConceptScore W4214823367C12713177 @default.
- W4214823367 hasConceptScore W4214823367C127413603 @default.
- W4214823367 hasConceptScore W4214823367C137580998 @default.
- W4214823367 hasConceptScore W4214823367C142724271 @default.
- W4214823367 hasConceptScore W4214823367C150903083 @default.
- W4214823367 hasConceptScore W4214823367C154945302 @default.
- W4214823367 hasConceptScore W4214823367C18903297 @default.
- W4214823367 hasConceptScore W4214823367C2778767146 @default.
- W4214823367 hasConceptScore W4214823367C2779134260 @default.
- W4214823367 hasConceptScore W4214823367C3019235130 @default.
- W4214823367 hasConceptScore W4214823367C41008148 @default.
- W4214823367 hasConceptScore W4214823367C59822182 @default.
- W4214823367 hasConceptScore W4214823367C6557445 @default.
- W4214823367 hasConceptScore W4214823367C71924100 @default.
- W4214823367 hasConceptScore W4214823367C86803240 @default.
- W4214823367 hasConceptScore W4214823367C88463610 @default.
- W4214823367 hasLocation W42148233671 @default.
- W4214823367 hasOpenAccess W4214823367 @default.
- W4214823367 hasPrimaryLocation W42148233671 @default.
- W4214823367 hasRelatedWork W2528397788 @default.
- W4214823367 hasRelatedWork W2961085424 @default.
- W4214823367 hasRelatedWork W3133047415 @default.
- W4214823367 hasRelatedWork W3158527823 @default.
- W4214823367 hasRelatedWork W3183376677 @default.
- W4214823367 hasRelatedWork W4281706949 @default.
- W4214823367 hasRelatedWork W4286009155 @default.
- W4214823367 hasRelatedWork W4306674287 @default.
- W4214823367 hasRelatedWork W4310684414 @default.
- W4214823367 hasRelatedWork W4224009465 @default.
- W4214823367 isParatext "false" @default.
- W4214823367 isRetracted "false" @default.
- W4214823367 workType "article" @default.