Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214832854> ?p ?o ?g. }
- W4214832854 endingPage "19668" @default.
- W4214832854 startingPage "19655" @default.
- W4214832854 abstract "In this work, the gas phase photocatalytic CO 2 reduction was analyzed via machine learning, and the results were compared with those obtained in liquid phase process. Total 549 data points (268 for gas and 281 for liquid phase) were extracted from 80 published papers for this purpose. The general trends in the literature were analyzed using simple descriptive statistics first; then, the random forest (RF) regression was used for the band gap prediction while the decision tree (DT) classification was utilized to deduce heuristics for higher CO 2 reduction rates. It was found that H 2 , CO, and CH 4 are the main products in gas phase while CH 3 OH production is more dominant in liquid phase. Random forest prediction was quite successful in predicting the band gap with the root mean square error of 0.15 for testing. Decision tree models for the total gas production rates were also successful; for example, the accuracy rates for training and testing were 80% and 79% respectively for the gas phase processes. The high precision for the high gas production class allowed to deduce some rules indicating the semiconductor and co-catalysts options for high CO 2 photoreduction rates while the reaction temperatures was also found to be influential in the liquid phase. • Photocatalytic CO 2 reduction was studied using machine learning. • Descriptive statistics, decision tree (DT) and random forest (RF) were used. • The bandgap prediction with RF was quite successful. • Heuristic rules were deduced for high total gas production rate using DT. • Semiconductor and co-catalyst were found to be deterministic." @default.
- W4214832854 created "2022-03-05" @default.
- W4214832854 creator A5002036403 @default.
- W4214832854 creator A5048170103 @default.
- W4214832854 creator A5054854930 @default.
- W4214832854 creator A5083517243 @default.
- W4214832854 date "2022-05-01" @default.
- W4214832854 modified "2023-09-30" @default.
- W4214832854 title "Machine learning analysis of gas phase photocatalytic CO2 reduction for hydrogen production" @default.
- W4214832854 cites W1514704488 @default.
- W4214832854 cites W1829643206 @default.
- W4214832854 cites W1993545510 @default.
- W4214832854 cites W2001220274 @default.
- W4214832854 cites W2003135711 @default.
- W4214832854 cites W2005794697 @default.
- W4214832854 cites W2007195128 @default.
- W4214832854 cites W2014513800 @default.
- W4214832854 cites W2017809022 @default.
- W4214832854 cites W2019070181 @default.
- W4214832854 cites W2050929231 @default.
- W4214832854 cites W2052119281 @default.
- W4214832854 cites W2061166339 @default.
- W4214832854 cites W2061600474 @default.
- W4214832854 cites W2121664334 @default.
- W4214832854 cites W2145413612 @default.
- W4214832854 cites W2148238437 @default.
- W4214832854 cites W2314642759 @default.
- W4214832854 cites W2324914891 @default.
- W4214832854 cites W2329982103 @default.
- W4214832854 cites W2334052068 @default.
- W4214832854 cites W2404598234 @default.
- W4214832854 cites W2414832008 @default.
- W4214832854 cites W2461987994 @default.
- W4214832854 cites W2471651223 @default.
- W4214832854 cites W2577501698 @default.
- W4214832854 cites W2707075225 @default.
- W4214832854 cites W2754478583 @default.
- W4214832854 cites W2755269103 @default.
- W4214832854 cites W2759147296 @default.
- W4214832854 cites W2767554747 @default.
- W4214832854 cites W2770592218 @default.
- W4214832854 cites W2884977534 @default.
- W4214832854 cites W2895618318 @default.
- W4214832854 cites W2897562460 @default.
- W4214832854 cites W2899134328 @default.
- W4214832854 cites W2899582150 @default.
- W4214832854 cites W2900401915 @default.
- W4214832854 cites W2918536434 @default.
- W4214832854 cites W2942758519 @default.
- W4214832854 cites W2961341867 @default.
- W4214832854 cites W2970684923 @default.
- W4214832854 cites W2983107015 @default.
- W4214832854 cites W2985869506 @default.
- W4214832854 cites W3005461334 @default.
- W4214832854 cites W3084966153 @default.
- W4214832854 cites W3091030757 @default.
- W4214832854 cites W3095650796 @default.
- W4214832854 cites W3129039627 @default.
- W4214832854 cites W3134045566 @default.
- W4214832854 cites W3182274954 @default.
- W4214832854 cites W3197815669 @default.
- W4214832854 cites W3206384804 @default.
- W4214832854 cites W3206392474 @default.
- W4214832854 cites W4200181017 @default.
- W4214832854 doi "https://doi.org/10.1016/j.ijhydene.2022.02.030" @default.
- W4214832854 hasPublicationYear "2022" @default.
- W4214832854 type Work @default.
- W4214832854 citedByCount "11" @default.
- W4214832854 countsByYear W42148328542022 @default.
- W4214832854 countsByYear W42148328542023 @default.
- W4214832854 crossrefType "journal-article" @default.
- W4214832854 hasAuthorship W4214832854A5002036403 @default.
- W4214832854 hasAuthorship W4214832854A5048170103 @default.
- W4214832854 hasAuthorship W4214832854A5054854930 @default.
- W4214832854 hasAuthorship W4214832854A5083517243 @default.
- W4214832854 hasConcept C111335779 @default.
- W4214832854 hasConcept C139719470 @default.
- W4214832854 hasConcept C147789679 @default.
- W4214832854 hasConcept C161790260 @default.
- W4214832854 hasConcept C162324750 @default.
- W4214832854 hasConcept C178790620 @default.
- W4214832854 hasConcept C185592680 @default.
- W4214832854 hasConcept C192562407 @default.
- W4214832854 hasConcept C202189072 @default.
- W4214832854 hasConcept C2524010 @default.
- W4214832854 hasConcept C2778348673 @default.
- W4214832854 hasConcept C3020013744 @default.
- W4214832854 hasConcept C33923547 @default.
- W4214832854 hasConcept C39432304 @default.
- W4214832854 hasConcept C44280652 @default.
- W4214832854 hasConcept C512968161 @default.
- W4214832854 hasConcept C65165184 @default.
- W4214832854 hasConceptScore W4214832854C111335779 @default.
- W4214832854 hasConceptScore W4214832854C139719470 @default.
- W4214832854 hasConceptScore W4214832854C147789679 @default.
- W4214832854 hasConceptScore W4214832854C161790260 @default.
- W4214832854 hasConceptScore W4214832854C162324750 @default.
- W4214832854 hasConceptScore W4214832854C178790620 @default.