Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214834636> ?p ?o ?g. }
- W4214834636 endingPage "258" @default.
- W4214834636 startingPage "245" @default.
- W4214834636 abstract "The number of cardiovascular imaging studies is growing exponentially, and so is the demand to improve the efficacy of the imaging workflow. Over the past decade, studies have demonstrated that machine learning (ML) holds promise to revolutionize cardiovascular research and clinical care. ML may improve several aspects of cardiovascular imaging, such as image acquisition, segmentation, image interpretation, diagnostics, therapy planning, and prognostication. In this review, we discuss the most promising applications of ML in cardiovascular imaging and also highlight the several challenges to its widespread implementation in clinical practice." @default.
- W4214834636 created "2022-03-05" @default.
- W4214834636 creator A5015225256 @default.
- W4214834636 creator A5077886342 @default.
- W4214834636 creator A5086934416 @default.
- W4214834636 date "2022-04-01" @default.
- W4214834636 modified "2023-10-16" @default.
- W4214834636 title "Machine Learning in Cardiovascular Imaging" @default.
- W4214834636 cites W1453335796 @default.
- W4214834636 cites W174262147 @default.
- W4214834636 cites W1989757660 @default.
- W4214834636 cites W1990502611 @default.
- W4214834636 cites W2080825898 @default.
- W4214834636 cites W2125226454 @default.
- W4214834636 cites W2127873596 @default.
- W4214834636 cites W2157941678 @default.
- W4214834636 cites W2174661749 @default.
- W4214834636 cites W2266692974 @default.
- W4214834636 cites W2335916523 @default.
- W4214834636 cites W2345003174 @default.
- W4214834636 cites W2740008332 @default.
- W4214834636 cites W2762195773 @default.
- W4214834636 cites W2765669952 @default.
- W4214834636 cites W2792378564 @default.
- W4214834636 cites W2792832083 @default.
- W4214834636 cites W2801357935 @default.
- W4214834636 cites W2802492228 @default.
- W4214834636 cites W2803176574 @default.
- W4214834636 cites W2804511116 @default.
- W4214834636 cites W2806672679 @default.
- W4214834636 cites W2807965844 @default.
- W4214834636 cites W2888193668 @default.
- W4214834636 cites W2888633322 @default.
- W4214834636 cites W2893031447 @default.
- W4214834636 cites W2895401428 @default.
- W4214834636 cites W2896287590 @default.
- W4214834636 cites W2896557062 @default.
- W4214834636 cites W2897320536 @default.
- W4214834636 cites W2903324678 @default.
- W4214834636 cites W2909339748 @default.
- W4214834636 cites W2911651271 @default.
- W4214834636 cites W2913466699 @default.
- W4214834636 cites W2914383481 @default.
- W4214834636 cites W2915053383 @default.
- W4214834636 cites W2952013322 @default.
- W4214834636 cites W2953522645 @default.
- W4214834636 cites W2958682939 @default.
- W4214834636 cites W2963428668 @default.
- W4214834636 cites W2964829862 @default.
- W4214834636 cites W2971942509 @default.
- W4214834636 cites W2971964864 @default.
- W4214834636 cites W2974289453 @default.
- W4214834636 cites W2974549447 @default.
- W4214834636 cites W2982790269 @default.
- W4214834636 cites W2988868890 @default.
- W4214834636 cites W2989991226 @default.
- W4214834636 cites W2991400566 @default.
- W4214834636 cites W2999009935 @default.
- W4214834636 cites W3000367425 @default.
- W4214834636 cites W3005949594 @default.
- W4214834636 cites W3008000699 @default.
- W4214834636 cites W3011168529 @default.
- W4214834636 cites W3011774181 @default.
- W4214834636 cites W3013692475 @default.
- W4214834636 cites W3014163460 @default.
- W4214834636 cites W3021644017 @default.
- W4214834636 cites W3039210127 @default.
- W4214834636 cites W3090272967 @default.
- W4214834636 cites W3092594819 @default.
- W4214834636 cites W3105445034 @default.
- W4214834636 cites W3106450090 @default.
- W4214834636 cites W3107555300 @default.
- W4214834636 cites W3108678668 @default.
- W4214834636 cites W3127524622 @default.
- W4214834636 cites W3132346797 @default.
- W4214834636 cites W3134395396 @default.
- W4214834636 cites W3163367444 @default.
- W4214834636 doi "https://doi.org/10.1016/j.hfc.2021.11.003" @default.
- W4214834636 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35341538" @default.
- W4214834636 hasPublicationYear "2022" @default.
- W4214834636 type Work @default.
- W4214834636 citedByCount "3" @default.
- W4214834636 countsByYear W42148346362022 @default.
- W4214834636 countsByYear W42148346362023 @default.
- W4214834636 crossrefType "journal-article" @default.
- W4214834636 hasAuthorship W4214834636A5015225256 @default.
- W4214834636 hasAuthorship W4214834636A5077886342 @default.
- W4214834636 hasAuthorship W4214834636A5086934416 @default.
- W4214834636 hasConcept C126838900 @default.
- W4214834636 hasConcept C154945302 @default.
- W4214834636 hasConcept C177212765 @default.
- W4214834636 hasConcept C177713679 @default.
- W4214834636 hasConcept C1862650 @default.
- W4214834636 hasConcept C19527891 @default.
- W4214834636 hasConcept C2779974597 @default.
- W4214834636 hasConcept C31601959 @default.
- W4214834636 hasConcept C41008148 @default.
- W4214834636 hasConcept C71924100 @default.