Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214837543> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4214837543 endingPage "191" @default.
- W4214837543 startingPage "184" @default.
- W4214837543 abstract "Permeability logs are critical data used to assess reservoir quality, which can impede the confidence of reservoir productivity without proper characterization. In particular, this can be significant in shale-sand sequence reservoirs that have heterogeneous lithology. Fortunately, permeability logs can be derived from Stoneley waves that are extracted from conventional full-waveform sonic logs. Because sonic logs are not always available in old wells, exploring alternatives to predict permeability is essential. The artificial neural network method is one option that provides elements to develop a model to predict permeability logs in offset wells. Consequently, a model is constructed using standard logs as input data and a Stoneley-wave permeability log as the desired output. These logs are obtained from a new well containing a complete suite of logs including full-waveform sonic data and a permeability log. The open-source Python library Keras provides the environment to generate the model. The model is applied to two nearby wells in which permeability logs do not exist. The borehole separation from the new well to the far well is 2055 ft, and the separation distance to the near well is 1370 ft. The logging data were acquired from wells located in an oil reservoir at Waggoner Ranch in northeast Texas. The reservoir geology is a sand-shale sequence intercepted by thin limestone markers at several depths. Permeability logs are predicted and correlated with other logs and their corresponding lithology. Sands partially saturated with hydrocarbons are identified by their permeability properties at the wells. The sands were previously characterized and mapped from impedance data using a nonlinear inversion of reflection seismic image constrained with well logs. The data analysis demonstrates the usefulness of the neural network approach to predict permeability in reservoirs where offset wells are available and only one well contains a permeability log." @default.
- W4214837543 created "2022-03-05" @default.
- W4214837543 creator A5039811228 @default.
- W4214837543 date "2022-03-01" @default.
- W4214837543 modified "2023-09-27" @default.
- W4214837543 title "Deep learning for predicting permeability logs in offset wells using an artificial neural network at a Waggoner Ranch reservoir, Texas" @default.
- W4214837543 cites W2033731818 @default.
- W4214837543 cites W203888015 @default.
- W4214837543 cites W2058257812 @default.
- W4214837543 cites W2061069258 @default.
- W4214837543 cites W2065818528 @default.
- W4214837543 cites W2769642891 @default.
- W4214837543 cites W3089462764 @default.
- W4214837543 doi "https://doi.org/10.1190/tle41030184.1" @default.
- W4214837543 hasPublicationYear "2022" @default.
- W4214837543 type Work @default.
- W4214837543 citedByCount "2" @default.
- W4214837543 countsByYear W42148375432022 @default.
- W4214837543 crossrefType "journal-article" @default.
- W4214837543 hasAuthorship W4214837543A5039811228 @default.
- W4214837543 hasConcept C120882062 @default.
- W4214837543 hasConcept C122792734 @default.
- W4214837543 hasConcept C127313418 @default.
- W4214837543 hasConcept C14641988 @default.
- W4214837543 hasConcept C150560799 @default.
- W4214837543 hasConcept C151730666 @default.
- W4214837543 hasConcept C153127940 @default.
- W4214837543 hasConcept C187320778 @default.
- W4214837543 hasConcept C2777139213 @default.
- W4214837543 hasConcept C35817400 @default.
- W4214837543 hasConcept C41625074 @default.
- W4214837543 hasConcept C54355233 @default.
- W4214837543 hasConcept C5900021 @default.
- W4214837543 hasConcept C78762247 @default.
- W4214837543 hasConcept C86803240 @default.
- W4214837543 hasConceptScore W4214837543C120882062 @default.
- W4214837543 hasConceptScore W4214837543C122792734 @default.
- W4214837543 hasConceptScore W4214837543C127313418 @default.
- W4214837543 hasConceptScore W4214837543C14641988 @default.
- W4214837543 hasConceptScore W4214837543C150560799 @default.
- W4214837543 hasConceptScore W4214837543C151730666 @default.
- W4214837543 hasConceptScore W4214837543C153127940 @default.
- W4214837543 hasConceptScore W4214837543C187320778 @default.
- W4214837543 hasConceptScore W4214837543C2777139213 @default.
- W4214837543 hasConceptScore W4214837543C35817400 @default.
- W4214837543 hasConceptScore W4214837543C41625074 @default.
- W4214837543 hasConceptScore W4214837543C54355233 @default.
- W4214837543 hasConceptScore W4214837543C5900021 @default.
- W4214837543 hasConceptScore W4214837543C78762247 @default.
- W4214837543 hasConceptScore W4214837543C86803240 @default.
- W4214837543 hasIssue "3" @default.
- W4214837543 hasLocation W42148375431 @default.
- W4214837543 hasOpenAccess W4214837543 @default.
- W4214837543 hasPrimaryLocation W42148375431 @default.
- W4214837543 hasRelatedWork W2014038551 @default.
- W4214837543 hasRelatedWork W2037627549 @default.
- W4214837543 hasRelatedWork W2086532810 @default.
- W4214837543 hasRelatedWork W2353990291 @default.
- W4214837543 hasRelatedWork W2376034623 @default.
- W4214837543 hasRelatedWork W2389632227 @default.
- W4214837543 hasRelatedWork W2804097049 @default.
- W4214837543 hasRelatedWork W306664825 @default.
- W4214837543 hasRelatedWork W4214837543 @default.
- W4214837543 hasRelatedWork W4316039126 @default.
- W4214837543 hasVolume "41" @default.
- W4214837543 isParatext "false" @default.
- W4214837543 isRetracted "false" @default.
- W4214837543 workType "article" @default.