Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214846422> ?p ?o ?g. }
- W4214846422 endingPage "32727" @default.
- W4214846422 startingPage "32706" @default.
- W4214846422 abstract "Precision livestock farming promises substantial advantages in terms of animal welfare, product quality and reducing methane emissions, but requires continuous and reliable data on the animal's behavior. While systems suitable for use within the barn exist, grazing over long distances poses challenges. Here, we address this issue by proposing an ultra low-power Edge AI device, minimizing data transmission requirements and potentially improving accuracy as compared to classification-based solutions. Namely, we propose cow behavior distribution regression with Recurrent Neural Networks (RNNs), dubbed TinyCowNet, to estimate mixed-label sample spaces. Without quantization, the random search to minimize resources and maximize accuracy shows networks requiring a memory of 76kB on average and offering an accuracy up to 95.7%. These are implementable on a wide range of low-power Micro Controller Units (MCU) and Field Programmable Gate Arrays (FPGA). Furthermore, our proposed post-training full-integer quantization for RNNs combined with power estimation on 45nm CMOS using experimental literature shows a TinyCowNet occupying a memory around <inline-formula> <tex-math notation=LaTeX>$approx 2$ </tex-math></inline-formula>kB, having a hypothetical power consumption on the order of 200nW, delivering an accuracy of 95.2% and a Matthews correlation coefficient of 0.86. This work paves the way for the future creation of low-cost, highly accurate cow behavior estimation devices with long battery life that reduce the entry barriers currently hindering precision livestock farming outside the barn." @default.
- W4214846422 created "2022-03-05" @default.
- W4214846422 creator A5002041758 @default.
- W4214846422 creator A5013235577 @default.
- W4214846422 creator A5016020806 @default.
- W4214846422 creator A5018610892 @default.
- W4214846422 creator A5030041130 @default.
- W4214846422 creator A5033648353 @default.
- W4214846422 creator A5052451157 @default.
- W4214846422 creator A5057018686 @default.
- W4214846422 creator A5079428934 @default.
- W4214846422 creator A5091055664 @default.
- W4214846422 date "2022-01-01" @default.
- W4214846422 modified "2023-09-30" @default.
- W4214846422 title "TinyCowNet: Memory- and Power-Minimized RNNs Implementable on Tiny Edge Devices for Lifelong Cow Behavior Distribution Estimation" @default.
- W4214846422 cites W1576347779 @default.
- W4214846422 cites W1929706986 @default.
- W4214846422 cites W2050090101 @default.
- W4214846422 cites W2064675550 @default.
- W4214846422 cites W2089613418 @default.
- W4214846422 cites W2155653793 @default.
- W4214846422 cites W2161911263 @default.
- W4214846422 cites W2309144754 @default.
- W4214846422 cites W2521525306 @default.
- W4214846422 cites W2527036487 @default.
- W4214846422 cites W2589012190 @default.
- W4214846422 cites W2597831797 @default.
- W4214846422 cites W2613194104 @default.
- W4214846422 cites W2620760558 @default.
- W4214846422 cites W2646590525 @default.
- W4214846422 cites W2749959226 @default.
- W4214846422 cites W2777654487 @default.
- W4214846422 cites W2790024316 @default.
- W4214846422 cites W2801255429 @default.
- W4214846422 cites W2802314367 @default.
- W4214846422 cites W2884001105 @default.
- W4214846422 cites W2895348646 @default.
- W4214846422 cites W2901156845 @default.
- W4214846422 cites W2904597062 @default.
- W4214846422 cites W2963122961 @default.
- W4214846422 cites W2963918968 @default.
- W4214846422 cites W2964347220 @default.
- W4214846422 cites W2973268792 @default.
- W4214846422 cites W2982083293 @default.
- W4214846422 cites W3004797226 @default.
- W4214846422 cites W3014322204 @default.
- W4214846422 cites W3023371261 @default.
- W4214846422 cites W3030391949 @default.
- W4214846422 cites W3041165114 @default.
- W4214846422 cites W3042905487 @default.
- W4214846422 cites W3093042324 @default.
- W4214846422 cites W3105432754 @default.
- W4214846422 cites W3125484574 @default.
- W4214846422 cites W3136932522 @default.
- W4214846422 cites W3157853192 @default.
- W4214846422 cites W3158382199 @default.
- W4214846422 cites W3166500454 @default.
- W4214846422 cites W3184978184 @default.
- W4214846422 cites W3199861974 @default.
- W4214846422 cites W3200967367 @default.
- W4214846422 cites W3207858745 @default.
- W4214846422 cites W4254816979 @default.
- W4214846422 cites W4255158661 @default.
- W4214846422 doi "https://doi.org/10.1109/access.2022.3156278" @default.
- W4214846422 hasPublicationYear "2022" @default.
- W4214846422 type Work @default.
- W4214846422 citedByCount "4" @default.
- W4214846422 countsByYear W42148464222022 @default.
- W4214846422 countsByYear W42148464222023 @default.
- W4214846422 crossrefType "journal-article" @default.
- W4214846422 hasAuthorship W4214846422A5002041758 @default.
- W4214846422 hasAuthorship W4214846422A5013235577 @default.
- W4214846422 hasAuthorship W4214846422A5016020806 @default.
- W4214846422 hasAuthorship W4214846422A5018610892 @default.
- W4214846422 hasAuthorship W4214846422A5030041130 @default.
- W4214846422 hasAuthorship W4214846422A5033648353 @default.
- W4214846422 hasAuthorship W4214846422A5052451157 @default.
- W4214846422 hasAuthorship W4214846422A5057018686 @default.
- W4214846422 hasAuthorship W4214846422A5079428934 @default.
- W4214846422 hasAuthorship W4214846422A5091055664 @default.
- W4214846422 hasBestOaLocation W42148464221 @default.
- W4214846422 hasConcept C113775141 @default.
- W4214846422 hasConcept C11413529 @default.
- W4214846422 hasConcept C126255220 @default.
- W4214846422 hasConcept C147168706 @default.
- W4214846422 hasConcept C154945302 @default.
- W4214846422 hasConcept C28855332 @default.
- W4214846422 hasConcept C33923547 @default.
- W4214846422 hasConcept C40567965 @default.
- W4214846422 hasConcept C41008148 @default.
- W4214846422 hasConcept C50644808 @default.
- W4214846422 hasConceptScore W4214846422C113775141 @default.
- W4214846422 hasConceptScore W4214846422C11413529 @default.
- W4214846422 hasConceptScore W4214846422C126255220 @default.
- W4214846422 hasConceptScore W4214846422C147168706 @default.
- W4214846422 hasConceptScore W4214846422C154945302 @default.
- W4214846422 hasConceptScore W4214846422C28855332 @default.
- W4214846422 hasConceptScore W4214846422C33923547 @default.