Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214856970> ?p ?o ?g. }
- W4214856970 abstract "Diagnosis is a crucial precautionary step in research studies of the coronavirus disease, which shows indications similar to those of various pneumonia types. The COVID-19 pandemic has caused a significant outbreak in more than 150 nations and has significantly affected the wellness and lives of many individuals globally. Particularly, discovering the patients infected with COVID-19 early and providing them with treatment is an important way of fighting the pandemic. Radiography and radiology could be the fastest techniques for recognizing infected individuals. Artificial intelligence strategies have the potential to overcome this difficulty. Particularly, transfer learning MobileNetV2 is a convolutional neural network architecture that can perform well on mobile devices. In this study, we used MobileNetV2 with transfer learning and augmentation data techniques as a classifier to recognize the coronavirus disease. Two datasets were used: the first consisted of 309 chest X-ray images (102 with COVID-19 and 207 were normal), and the second consisted of 516 chest X-ray images (102 with COVID-19 and 414 were normal). We assessed the model based on its sensitivity rate, specificity rate, confusion matrix, and F1-measure. Additionally, we present a receiver operating characteristic curve. The numerical simulation reveals that the model accuracy is 95.8% and 100% at dropouts of 0.3 and 0.4, respectively. The model was implemented using Keras and Python programming." @default.
- W4214856970 created "2022-03-05" @default.
- W4214856970 creator A5000229846 @default.
- W4214856970 creator A5003500465 @default.
- W4214856970 creator A5006254603 @default.
- W4214856970 creator A5018212894 @default.
- W4214856970 creator A5051778437 @default.
- W4214856970 creator A5052495689 @default.
- W4214856970 creator A5075183774 @default.
- W4214856970 date "2022-03-03" @default.
- W4214856970 modified "2023-10-16" @default.
- W4214856970 title "COVID-19 Identification System Using Transfer Learning Technique With Mobile-NetV2 and Chest X-Ray Images" @default.
- W4214856970 cites W2062118960 @default.
- W4214856970 cites W2097117768 @default.
- W4214856970 cites W2112796928 @default.
- W4214856970 cites W2194775991 @default.
- W4214856970 cites W2531409750 @default.
- W4214856970 cites W2592929672 @default.
- W4214856970 cites W2783231089 @default.
- W4214856970 cites W2788633781 @default.
- W4214856970 cites W2800691917 @default.
- W4214856970 cites W2809254203 @default.
- W4214856970 cites W2891756914 @default.
- W4214856970 cites W2963881378 @default.
- W4214856970 cites W2964350391 @default.
- W4214856970 cites W2981983863 @default.
- W4214856970 cites W2997180306 @default.
- W4214856970 cites W2999089337 @default.
- W4214856970 cites W3001465255 @default.
- W4214856970 cites W3006645647 @default.
- W4214856970 cites W3007455870 @default.
- W4214856970 cites W3007497549 @default.
- W4214856970 cites W3007764760 @default.
- W4214856970 cites W3013130152 @default.
- W4214856970 cites W3013601031 @default.
- W4214856970 cites W3013865762 @default.
- W4214856970 cites W3033272228 @default.
- W4214856970 cites W3033616466 @default.
- W4214856970 cites W3040361773 @default.
- W4214856970 cites W3087275632 @default.
- W4214856970 cites W3095681026 @default.
- W4214856970 cites W3105081694 @default.
- W4214856970 cites W3133191822 @default.
- W4214856970 cites W3135213909 @default.
- W4214856970 cites W3136420378 @default.
- W4214856970 cites W3138118097 @default.
- W4214856970 cites W3164997145 @default.
- W4214856970 cites W4200130905 @default.
- W4214856970 cites W4200553156 @default.
- W4214856970 cites W54257720 @default.
- W4214856970 cites W639708223 @default.
- W4214856970 doi "https://doi.org/10.3389/fpubh.2022.819156" @default.
- W4214856970 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35309201" @default.
- W4214856970 hasPublicationYear "2022" @default.
- W4214856970 type Work @default.
- W4214856970 citedByCount "0" @default.
- W4214856970 crossrefType "journal-article" @default.
- W4214856970 hasAuthorship W4214856970A5000229846 @default.
- W4214856970 hasAuthorship W4214856970A5003500465 @default.
- W4214856970 hasAuthorship W4214856970A5006254603 @default.
- W4214856970 hasAuthorship W4214856970A5018212894 @default.
- W4214856970 hasAuthorship W4214856970A5051778437 @default.
- W4214856970 hasAuthorship W4214856970A5052495689 @default.
- W4214856970 hasAuthorship W4214856970A5075183774 @default.
- W4214856970 hasBestOaLocation W42148569701 @default.
- W4214856970 hasConcept C108583219 @default.
- W4214856970 hasConcept C11171543 @default.
- W4214856970 hasConcept C111919701 @default.
- W4214856970 hasConcept C119857082 @default.
- W4214856970 hasConcept C126838900 @default.
- W4214856970 hasConcept C138602881 @default.
- W4214856970 hasConcept C142724271 @default.
- W4214856970 hasConcept C150899416 @default.
- W4214856970 hasConcept C154945302 @default.
- W4214856970 hasConcept C15744967 @default.
- W4214856970 hasConcept C2777120189 @default.
- W4214856970 hasConcept C2779134260 @default.
- W4214856970 hasConcept C2781140086 @default.
- W4214856970 hasConcept C3007834351 @default.
- W4214856970 hasConcept C3008058167 @default.
- W4214856970 hasConcept C36454342 @default.
- W4214856970 hasConcept C41008148 @default.
- W4214856970 hasConcept C50644808 @default.
- W4214856970 hasConcept C519991488 @default.
- W4214856970 hasConcept C524204448 @default.
- W4214856970 hasConcept C545542383 @default.
- W4214856970 hasConcept C58471807 @default.
- W4214856970 hasConcept C71924100 @default.
- W4214856970 hasConcept C81363708 @default.
- W4214856970 hasConcept C89623803 @default.
- W4214856970 hasConcept C95623464 @default.
- W4214856970 hasConceptScore W4214856970C108583219 @default.
- W4214856970 hasConceptScore W4214856970C11171543 @default.
- W4214856970 hasConceptScore W4214856970C111919701 @default.
- W4214856970 hasConceptScore W4214856970C119857082 @default.
- W4214856970 hasConceptScore W4214856970C126838900 @default.
- W4214856970 hasConceptScore W4214856970C138602881 @default.
- W4214856970 hasConceptScore W4214856970C142724271 @default.
- W4214856970 hasConceptScore W4214856970C150899416 @default.
- W4214856970 hasConceptScore W4214856970C154945302 @default.