Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214860147> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4214860147 endingPage "7125" @default.
- W4214860147 startingPage "7125" @default.
- W4214860147 abstract "<p style='text-indent:20px;'>In this paper, we investigate the large time behavior of the generalized solution to the Keller-Segel-Stokes system with logistic growth <inline-formula><tex-math id=M1>begin{document}$ rho n-rn^{alpha } $end{document}</tex-math></inline-formula> in a bounded domain <inline-formula><tex-math id=M2>begin{document}$ Omegasubset mathbb R^d $end{document}</tex-math></inline-formula> <inline-formula><tex-math id=M3>begin{document}$ (din{2, 3}) $end{document}</tex-math></inline-formula>, as given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=FE1> begin{document}$ begin{equation*} left{ begin{array}{l} &n_t+{{bf{u}}}cdotnabla n = Delta n-chinablacdotbig(nnabla cbig)+rho n-rn^{alpha }, &c_t+{{bf{u}}}cdotnabla c = Delta c-c+n, &{{bf{u}}}_t+nabla P = Delta{{bf{u}}}+nnablaphi, &nablacdot{{bf{u}}} = 0 end{array} right. end{equation*} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for the unknown <inline-formula><tex-math id=M4>begin{document}$ (n, c, {{bf{u}}}, P) $end{document}</tex-math></inline-formula>, with prescribed and suitably smooth <inline-formula><tex-math id=M5>begin{document}$ phi $end{document}</tex-math></inline-formula>. Our result shows that if <inline-formula><tex-math id=M6>begin{document}$ alpha $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=M7>begin{document}$ chi $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=M8>begin{document}$ rho $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=M9>begin{document}$ r $end{document}</tex-math></inline-formula> satisfy</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=FE2> begin{document}$ alpha > frac{2d-2}{d}quadmathrm{and}quadchi^2< Krho^{ frac{alpha -3}{alpha -1}}r^{ frac{2}{alpha -1}} $end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with some positive constant <inline-formula><tex-math id=M10>begin{document}$ K $end{document}</tex-math></inline-formula> depending on <inline-formula><tex-math id=M11>begin{document}$ alpha $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=M12>begin{document}$ Omega $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=M13>begin{document}$ phi $end{document}</tex-math></inline-formula>, the generalized solution converges to a constant steady state ((<inline-formula><tex-math id=M14>begin{document}$ frac{rho}{r})^{ frac{1}{alpha -1}}, ( frac{rho}{r})^{ frac{1}{alpha -1}}, {bf 0} $end{document}</tex-math></inline-formula>) after a large time. Our proof is based on the decay property of a functional involving <inline-formula><tex-math id=M15>begin{document}$ n $end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=M16>begin{document}$ c $end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=M17>begin{document}$ {bf{u}} $end{document}</tex-math></inline-formula>.</p>" @default.
- W4214860147 created "2022-03-05" @default.
- W4214860147 creator A5016607238 @default.
- W4214860147 date "2022-01-01" @default.
- W4214860147 modified "2023-10-14" @default.
- W4214860147 title "Approaching constant steady states in a Keller-Segel-Stokes system with subquadratic logistic growth" @default.
- W4214860147 cites W1462974673 @default.
- W4214860147 cites W1937071870 @default.
- W4214860147 cites W1973692656 @default.
- W4214860147 cites W1979996568 @default.
- W4214860147 cites W1990021158 @default.
- W4214860147 cites W1991933227 @default.
- W4214860147 cites W1996570341 @default.
- W4214860147 cites W1998312585 @default.
- W4214860147 cites W2015165311 @default.
- W4214860147 cites W2021045261 @default.
- W4214860147 cites W2027835972 @default.
- W4214860147 cites W2035135524 @default.
- W4214860147 cites W2039039511 @default.
- W4214860147 cites W2042892258 @default.
- W4214860147 cites W2078054462 @default.
- W4214860147 cites W2079997563 @default.
- W4214860147 cites W2081542877 @default.
- W4214860147 cites W2093633760 @default.
- W4214860147 cites W2121679360 @default.
- W4214860147 cites W2138427676 @default.
- W4214860147 cites W2205722988 @default.
- W4214860147 cites W2290971940 @default.
- W4214860147 cites W2323844697 @default.
- W4214860147 cites W2463994329 @default.
- W4214860147 cites W2513269885 @default.
- W4214860147 cites W2537864112 @default.
- W4214860147 cites W2563311065 @default.
- W4214860147 cites W2594463633 @default.
- W4214860147 cites W2608503345 @default.
- W4214860147 cites W2702101677 @default.
- W4214860147 cites W2778334512 @default.
- W4214860147 cites W2789629922 @default.
- W4214860147 cites W2795403928 @default.
- W4214860147 cites W2802186118 @default.
- W4214860147 cites W2905920381 @default.
- W4214860147 cites W2948373059 @default.
- W4214860147 cites W2963135581 @default.
- W4214860147 cites W2963970869 @default.
- W4214860147 cites W2964040530 @default.
- W4214860147 cites W2964209903 @default.
- W4214860147 cites W2982640692 @default.
- W4214860147 cites W3022382895 @default.
- W4214860147 cites W307078776 @default.
- W4214860147 cites W3083882383 @default.
- W4214860147 cites W3107155732 @default.
- W4214860147 cites W3134859758 @default.
- W4214860147 cites W4232549956 @default.
- W4214860147 cites W605848196 @default.
- W4214860147 doi "https://doi.org/10.3934/dcdsb.2022036" @default.
- W4214860147 hasPublicationYear "2022" @default.
- W4214860147 type Work @default.
- W4214860147 citedByCount "0" @default.
- W4214860147 crossrefType "journal-article" @default.
- W4214860147 hasAuthorship W4214860147A5016607238 @default.
- W4214860147 hasBestOaLocation W42148601471 @default.
- W4214860147 hasConcept C114614502 @default.
- W4214860147 hasConcept C121332964 @default.
- W4214860147 hasConcept C134306372 @default.
- W4214860147 hasConcept C2779557605 @default.
- W4214860147 hasConcept C33923547 @default.
- W4214860147 hasConcept C34388435 @default.
- W4214860147 hasConcept C54207081 @default.
- W4214860147 hasConcept C62520636 @default.
- W4214860147 hasConcept C94375191 @default.
- W4214860147 hasConceptScore W4214860147C114614502 @default.
- W4214860147 hasConceptScore W4214860147C121332964 @default.
- W4214860147 hasConceptScore W4214860147C134306372 @default.
- W4214860147 hasConceptScore W4214860147C2779557605 @default.
- W4214860147 hasConceptScore W4214860147C33923547 @default.
- W4214860147 hasConceptScore W4214860147C34388435 @default.
- W4214860147 hasConceptScore W4214860147C54207081 @default.
- W4214860147 hasConceptScore W4214860147C62520636 @default.
- W4214860147 hasConceptScore W4214860147C94375191 @default.
- W4214860147 hasIssue "12" @default.
- W4214860147 hasLocation W42148601471 @default.
- W4214860147 hasOpenAccess W4214860147 @default.
- W4214860147 hasPrimaryLocation W42148601471 @default.
- W4214860147 hasRelatedWork W1523522873 @default.
- W4214860147 hasRelatedWork W1972934244 @default.
- W4214860147 hasRelatedWork W2068862035 @default.
- W4214860147 hasRelatedWork W2594960193 @default.
- W4214860147 hasRelatedWork W2613503523 @default.
- W4214860147 hasRelatedWork W2798980919 @default.
- W4214860147 hasRelatedWork W2949135996 @default.
- W4214860147 hasRelatedWork W3087155483 @default.
- W4214860147 hasRelatedWork W3175264703 @default.
- W4214860147 hasRelatedWork W4320623760 @default.
- W4214860147 hasVolume "27" @default.
- W4214860147 isParatext "false" @default.
- W4214860147 isRetracted "false" @default.
- W4214860147 workType "article" @default.