Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214872103> ?p ?o ?g. }
- W4214872103 endingPage "e02075" @default.
- W4214872103 startingPage "e02075" @default.
- W4214872103 abstract "Designing a population monitoring program for Asian bears presents challenges associated with their low densities and detectability, generally large home ranges, and logistical or resource constraints. The use of an occupancy-based method to monitor bear populations can be appropriate under certain conditions given the mechanistic relationship between occupancy and abundance. The form of the occupancy–abundance relationship is dependent on species-specific characteristics such as home range size and population density, as well as study area size. To assess the statistical power of tests to detect population change of Asian bears, we conducted a study using a range of scenarios by simulating spatially explicit individual-based capture-recapture data from a demographically open model. Simulations assessed the power to detect changes in population density via changes in site-level occupancy or abundance through time, estimated using a standard occupancy model or a Royle-Nichols model, both with point detectors (representing camera traps). We used IUCN Red List criteria as a guide in selection of two population decline scenarios (20% and 50%), but we chose a shorter time horizon (10 years = 1 bear generation), meaning that declines were steeper than used for IUCN criteria (3 generations). Our simulations detected population declines of 50% with high power (>0.80) and low false positive rates (FPR: incorrectly detecting a decline) (<0.10) when detectors were spaced at > 0.67 times the home range diameter (home-range spacing ratio: HRSR, a measure of spatial correlation), such that bears would tend to overlap no more than two detectors. There was high (0.85) correlation between realized occupancy and N in these scenarios. The FPR increased as the HRSR decreased because of spatial correlation in the occupancy process induced when individual home ranges overlap multiple detectors. The mean statistical power to detect more gradual population declines (20% in 10 years) with HRSR > 0.67 was low for occupancy models 0.22 (maximum power 0.67) and Royle-Nichols models (0.24; maximum power 0.67), suggesting that declines of this magnitude may not be described reliably with 10 years of monitoring. Our results demonstrated that under many realistic scenarios that we explored, false positive rates were unacceptably high. We highlight that when designing occupancy studies, the spacing between point detectors be at least 0.67 times the diameter of the home range size of the larger sex (e.g., males) when the assumptions of the spatial capture-recapture model used for simulation are met." @default.
- W4214872103 created "2022-03-05" @default.
- W4214872103 creator A5001201884 @default.
- W4214872103 creator A5008414167 @default.
- W4214872103 creator A5022301519 @default.
- W4214872103 creator A5049604529 @default.
- W4214872103 creator A5056592432 @default.
- W4214872103 creator A5058740117 @default.
- W4214872103 creator A5073284312 @default.
- W4214872103 creator A5077999117 @default.
- W4214872103 date "2022-06-01" @default.
- W4214872103 modified "2023-10-01" @default.
- W4214872103 title "The occupancy-abundance relationship and sampling designs using occupancy to monitor populations of Asian bears" @default.
- W4214872103 cites W1524008524 @default.
- W4214872103 cites W1526320554 @default.
- W4214872103 cites W1575393310 @default.
- W4214872103 cites W1594293103 @default.
- W4214872103 cites W1779594683 @default.
- W4214872103 cites W1827162315 @default.
- W4214872103 cites W1838564129 @default.
- W4214872103 cites W1889145494 @default.
- W4214872103 cites W1906372678 @default.
- W4214872103 cites W1971406989 @default.
- W4214872103 cites W1985717371 @default.
- W4214872103 cites W1989096360 @default.
- W4214872103 cites W2017916851 @default.
- W4214872103 cites W2023433649 @default.
- W4214872103 cites W2026416225 @default.
- W4214872103 cites W2035856104 @default.
- W4214872103 cites W2037228554 @default.
- W4214872103 cites W2045959057 @default.
- W4214872103 cites W2050653216 @default.
- W4214872103 cites W2055869330 @default.
- W4214872103 cites W2071826245 @default.
- W4214872103 cites W2074118024 @default.
- W4214872103 cites W2074703150 @default.
- W4214872103 cites W2074862356 @default.
- W4214872103 cites W2076977597 @default.
- W4214872103 cites W2077732840 @default.
- W4214872103 cites W2098012392 @default.
- W4214872103 cites W2101610856 @default.
- W4214872103 cites W2107563782 @default.
- W4214872103 cites W2115685513 @default.
- W4214872103 cites W2116665868 @default.
- W4214872103 cites W2128861692 @default.
- W4214872103 cites W2133483174 @default.
- W4214872103 cites W2135942295 @default.
- W4214872103 cites W2137621748 @default.
- W4214872103 cites W2143988373 @default.
- W4214872103 cites W2147740855 @default.
- W4214872103 cites W2149429227 @default.
- W4214872103 cites W2149752458 @default.
- W4214872103 cites W2154563276 @default.
- W4214872103 cites W2400772503 @default.
- W4214872103 cites W2464745095 @default.
- W4214872103 cites W2467046380 @default.
- W4214872103 cites W2626267939 @default.
- W4214872103 cites W2750772879 @default.
- W4214872103 cites W2766365519 @default.
- W4214872103 cites W2769046031 @default.
- W4214872103 cites W2776750609 @default.
- W4214872103 cites W2845486616 @default.
- W4214872103 cites W2889148722 @default.
- W4214872103 cites W2948861536 @default.
- W4214872103 cites W2948904565 @default.
- W4214872103 cites W2949317198 @default.
- W4214872103 cites W2951441743 @default.
- W4214872103 cites W2997695140 @default.
- W4214872103 cites W3005540658 @default.
- W4214872103 cites W3008810012 @default.
- W4214872103 cites W3120193418 @default.
- W4214872103 cites W3162560623 @default.
- W4214872103 cites W3170449963 @default.
- W4214872103 cites W3184491555 @default.
- W4214872103 cites W4220935564 @default.
- W4214872103 cites W4238408464 @default.
- W4214872103 cites W4241401482 @default.
- W4214872103 cites W4244509314 @default.
- W4214872103 cites W4244693334 @default.
- W4214872103 cites W4251058557 @default.
- W4214872103 doi "https://doi.org/10.1016/j.gecco.2022.e02075" @default.
- W4214872103 hasPublicationYear "2022" @default.
- W4214872103 type Work @default.
- W4214872103 citedByCount "7" @default.
- W4214872103 countsByYear W42148721032022 @default.
- W4214872103 countsByYear W42148721032023 @default.
- W4214872103 crossrefType "journal-article" @default.
- W4214872103 hasAuthorship W4214872103A5001201884 @default.
- W4214872103 hasAuthorship W4214872103A5008414167 @default.
- W4214872103 hasAuthorship W4214872103A5022301519 @default.
- W4214872103 hasAuthorship W4214872103A5049604529 @default.
- W4214872103 hasAuthorship W4214872103A5056592432 @default.
- W4214872103 hasAuthorship W4214872103A5058740117 @default.
- W4214872103 hasAuthorship W4214872103A5073284312 @default.
- W4214872103 hasAuthorship W4214872103A5077999117 @default.
- W4214872103 hasBestOaLocation W42148721031 @default.
- W4214872103 hasConcept C105795698 @default.
- W4214872103 hasConcept C127413603 @default.