Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214882912> ?p ?o ?g. }
- W4214882912 endingPage "2356" @default.
- W4214882912 startingPage "2341" @default.
- W4214882912 abstract "Regions around the world experience adverse climate-change-induced conditions that pose severe risks to the normal and sustainable operations of modern societies. Extreme weather events, such as floods, rising sea levels, and storms, stand as characteristic examples that impair the core services of the global ecosystem. Especially floods have a severe impact on human activities, hence, early and accurate delineation of the disaster is of top priority since it provides environmental, economic, and societal benefits and eases relief efforts. In this article, we introduce OmbriaNet, a deep neural network architecture, based on convolutional neural networks, that detects changes between permanent and flooded water areas by exploiting the temporal differences among flood events extracted by different sensors. To demonstrate the potential of the proposed approach, we generated OMBRIA, a bitemporal and multimodal satellite imagery dataset for image segmentation through supervised binary classification. It consists of a total number of 3.376 images, synthetic aperture radar imagery from Sentinel-1, and multispectral imagery from Sentinel-2, accompanied with ground-truth binary images produced from data derived by experts and provided from the Emergency Management Service of the European Space Agency Copernicus Program. The dataset covers 23 flood events around the globe, from 2017 to 2021. We collected, co-registrated and preprocessed the data in Google Earth Engine. To validate the performance of our method, we performed different benchmarking experiments on the OMBRIA dataset and we compared with several competitive state-of-the-art techniques. The experimental analysis demonstrated that the proposed formulation is able to produce high-quality flood maps, achieving a superior performance over the state-of-the-art. We provide OMBRIA dataset, as well as OmbriaNet code at: <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/geodrak/OMBRIA</uri> ." @default.
- W4214882912 created "2022-03-05" @default.
- W4214882912 creator A5002165073 @default.
- W4214882912 creator A5023431794 @default.
- W4214882912 creator A5060388738 @default.
- W4214882912 creator A5067058424 @default.
- W4214882912 date "2022-01-01" @default.
- W4214882912 modified "2023-10-06" @default.
- W4214882912 title "OmbriaNet—Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion" @default.
- W4214882912 cites W1903029394 @default.
- W4214882912 cites W1965825034 @default.
- W4214882912 cites W1978617972 @default.
- W4214882912 cites W1980663293 @default.
- W4214882912 cites W2006108538 @default.
- W4214882912 cites W2028104478 @default.
- W4214882912 cites W2036745212 @default.
- W4214882912 cites W2050789528 @default.
- W4214882912 cites W2065800647 @default.
- W4214882912 cites W2074504304 @default.
- W4214882912 cites W2076196252 @default.
- W4214882912 cites W2078619499 @default.
- W4214882912 cites W2083029259 @default.
- W4214882912 cites W2087347434 @default.
- W4214882912 cites W2094202273 @default.
- W4214882912 cites W2101378180 @default.
- W4214882912 cites W2101678239 @default.
- W4214882912 cites W2117539524 @default.
- W4214882912 cites W2149298154 @default.
- W4214882912 cites W2149960531 @default.
- W4214882912 cites W2158776858 @default.
- W4214882912 cites W2170799651 @default.
- W4214882912 cites W2179290474 @default.
- W4214882912 cites W2243326906 @default.
- W4214882912 cites W2336807904 @default.
- W4214882912 cites W2412782625 @default.
- W4214882912 cites W2517986957 @default.
- W4214882912 cites W2531213996 @default.
- W4214882912 cites W2560167313 @default.
- W4214882912 cites W2577537809 @default.
- W4214882912 cites W2592224809 @default.
- W4214882912 cites W2605495192 @default.
- W4214882912 cites W2725897987 @default.
- W4214882912 cites W2733654097 @default.
- W4214882912 cites W2749751926 @default.
- W4214882912 cites W2782522152 @default.
- W4214882912 cites W2790399144 @default.
- W4214882912 cites W2793060913 @default.
- W4214882912 cites W2793268137 @default.
- W4214882912 cites W2800388963 @default.
- W4214882912 cites W2810192585 @default.
- W4214882912 cites W2810748649 @default.
- W4214882912 cites W2884821113 @default.
- W4214882912 cites W2885024393 @default.
- W4214882912 cites W2914311543 @default.
- W4214882912 cites W2919115771 @default.
- W4214882912 cites W2921979247 @default.
- W4214882912 cites W2941704308 @default.
- W4214882912 cites W2973184731 @default.
- W4214882912 cites W2974081857 @default.
- W4214882912 cites W2982329189 @default.
- W4214882912 cites W2990158732 @default.
- W4214882912 cites W3009961211 @default.
- W4214882912 cites W3036059328 @default.
- W4214882912 cites W3036506870 @default.
- W4214882912 cites W3126308856 @default.
- W4214882912 cites W3175205795 @default.
- W4214882912 cites W71286975 @default.
- W4214882912 doi "https://doi.org/10.1109/jstars.2022.3155559" @default.
- W4214882912 hasPublicationYear "2022" @default.
- W4214882912 type Work @default.
- W4214882912 citedByCount "9" @default.
- W4214882912 countsByYear W42148829122022 @default.
- W4214882912 countsByYear W42148829122023 @default.
- W4214882912 crossrefType "journal-article" @default.
- W4214882912 hasAuthorship W4214882912A5002165073 @default.
- W4214882912 hasAuthorship W4214882912A5023431794 @default.
- W4214882912 hasAuthorship W4214882912A5060388738 @default.
- W4214882912 hasAuthorship W4214882912A5067058424 @default.
- W4214882912 hasBestOaLocation W42148829121 @default.
- W4214882912 hasConcept C108583219 @default.
- W4214882912 hasConcept C119857082 @default.
- W4214882912 hasConcept C127413603 @default.
- W4214882912 hasConcept C146849305 @default.
- W4214882912 hasConcept C146978453 @default.
- W4214882912 hasConcept C154945302 @default.
- W4214882912 hasConcept C166957645 @default.
- W4214882912 hasConcept C173163844 @default.
- W4214882912 hasConcept C19269812 @default.
- W4214882912 hasConcept C205649164 @default.
- W4214882912 hasConcept C39399123 @default.
- W4214882912 hasConcept C39432304 @default.
- W4214882912 hasConcept C41008148 @default.
- W4214882912 hasConcept C62649853 @default.
- W4214882912 hasConcept C74256435 @default.
- W4214882912 hasConcept C81363708 @default.
- W4214882912 hasConcept C87360688 @default.
- W4214882912 hasConceptScore W4214882912C108583219 @default.
- W4214882912 hasConceptScore W4214882912C119857082 @default.