Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214883907> ?p ?o ?g. }
- W4214883907 abstract "<sec> <title>BACKGROUND</title> Advancements in technology offer new opportunities for the prevention and management of type 2 diabetes. Venture capital companies have been investing in digital diabetes companies that offer digital behavior change interventions (DBCIs). However, little is known about the scientific evidence underpinning such interventions or the degree to which those interventions leverage novel technology-driven automated developments such as conversational agents (CAs) or just-in-time adaptive intervention (JITAI) approaches. </sec> <sec> <title>OBJECTIVE</title> Our objectives were to identify the top-funded companies offering DBCIs for type 2 diabetes management and prevention, review the level of scientific evidence underpinning the DBCIs, identify which DBCIs are recognized as evidence-based programs by quality assurance authorities, and examine the degree to which these DBCIs include novel automated approaches such as CAs and JITAI mechanisms. </sec> <sec> <title>METHODS</title> A systematic search was conducted using two venture capital databases (Crunchbase Pro and Pitchbook) to identify the top-funded companies in type 2 diabetes prevention and management. Scientific publications relating to the identified DBCIs were identified via PubMed, Google Scholar, and the DBCI’s website and data regarding intervention effectiveness were extracted. The US CDC’s Diabetes Prevention Recognition Program (DPRP) was used to identify recognition status. The DBCIs’ publications, websites, and mobile applications were reviewed with regards to the intervention characteristics. </sec> <sec> <title>RESULTS</title> The 16 most-funded companies offering DBCIs for type 2 diabetes received a total funding of 2.4 billion USD as of June 15, 2021. Only four out of 50 identified publications associated with these DBCIs were fully powered randomized controlled trials (RCTs). One of those four RCTs showed a significant difference in HbA1c outcomes between the intervention and control group. However, all of the studies reported HbA1c improvements ranging from 0.2-1.9% over the course of 12 months. Six interventions were fully recognized by the DPRP to deliver evidence-based programs, and two interventions had a pending recognition status. Health professionals were included in the majority of DBCIs (81%, 13/16), whereas only 10% (1/10) of accessible apps involved a CA as part of the intervention delivery. Self-reports represented most of the data sources (62%, 74/119) that could be used to tailor JITAIs. </sec> <sec> <title>CONCLUSIONS</title> Our findings suggest that the level of funding received by companies offering DBCIs for type 2 diabetes prevention and management does not coincide with the level of evidence on the intervention effectiveness. There a is large variation in the level of evidence underpinning the different DBCIs and an overall need for more rigorous effectiveness trials and transparent reporting by quality assurance authorities. Currently, very few DBCIs use automated approaches such as CAs and JITAIs, limiting the scalability and reach of these solutions. Finally, more research is needed to establish the effectiveness of fully automated DBCIs in comparison to those offering human support. </sec>" @default.
- W4214883907 created "2022-03-05" @default.
- W4214883907 creator A5015878764 @default.
- W4214883907 creator A5019425784 @default.
- W4214883907 creator A5028930817 @default.
- W4214883907 creator A5042759529 @default.
- W4214883907 creator A5047492630 @default.
- W4214883907 creator A5047967392 @default.
- W4214883907 creator A5052988514 @default.
- W4214883907 creator A5055701476 @default.
- W4214883907 creator A5056760651 @default.
- W4214883907 creator A5067052265 @default.
- W4214883907 date "2021-09-06" @default.
- W4214883907 modified "2023-09-29" @default.
- W4214883907 title "Top-funded Companies Offering Digital Behavior Change Interventions for the Prevention and Management of Type-2 Diabetes: A Systematic Search on Venture Capital Databases and Content Analysis of Interventions (Preprint)" @default.
- W4214883907 cites W1944050078 @default.
- W4214883907 cites W1985945240 @default.
- W4214883907 cites W1989452694 @default.
- W4214883907 cites W2009918956 @default.
- W4214883907 cites W2048307056 @default.
- W4214883907 cites W2123508277 @default.
- W4214883907 cites W2157806282 @default.
- W4214883907 cites W2164045946 @default.
- W4214883907 cites W2274987900 @default.
- W4214883907 cites W2297817909 @default.
- W4214883907 cites W2407791238 @default.
- W4214883907 cites W2412754601 @default.
- W4214883907 cites W2427775456 @default.
- W4214883907 cites W2523153599 @default.
- W4214883907 cites W2530576206 @default.
- W4214883907 cites W2531568331 @default.
- W4214883907 cites W2531901946 @default.
- W4214883907 cites W2536295516 @default.
- W4214883907 cites W2592184816 @default.
- W4214883907 cites W2748939874 @default.
- W4214883907 cites W2775819279 @default.
- W4214883907 cites W2789580285 @default.
- W4214883907 cites W2800324513 @default.
- W4214883907 cites W2843010082 @default.
- W4214883907 cites W2886572631 @default.
- W4214883907 cites W2893810824 @default.
- W4214883907 cites W2903826340 @default.
- W4214883907 cites W2906810961 @default.
- W4214883907 cites W2908120001 @default.
- W4214883907 cites W2924472360 @default.
- W4214883907 cites W2942811502 @default.
- W4214883907 cites W2953842784 @default.
- W4214883907 cites W2970374162 @default.
- W4214883907 cites W2971759879 @default.
- W4214883907 cites W2983229458 @default.
- W4214883907 cites W2994039809 @default.
- W4214883907 cites W3002751842 @default.
- W4214883907 cites W3018264641 @default.
- W4214883907 cites W3021527075 @default.
- W4214883907 cites W3021895698 @default.
- W4214883907 cites W3046201587 @default.
- W4214883907 cites W3048100966 @default.
- W4214883907 cites W3093898812 @default.
- W4214883907 cites W3108478618 @default.
- W4214883907 cites W3120843836 @default.
- W4214883907 cites W3122673691 @default.
- W4214883907 cites W3135619344 @default.
- W4214883907 cites W3158530264 @default.
- W4214883907 cites W4205509296 @default.
- W4214883907 cites W4232648360 @default.
- W4214883907 cites W4248171535 @default.
- W4214883907 doi "https://doi.org/10.2196/preprints.33348" @default.
- W4214883907 hasPublicationYear "2021" @default.
- W4214883907 type Work @default.
- W4214883907 citedByCount "0" @default.
- W4214883907 crossrefType "posted-content" @default.
- W4214883907 hasAuthorship W4214883907A5015878764 @default.
- W4214883907 hasAuthorship W4214883907A5019425784 @default.
- W4214883907 hasAuthorship W4214883907A5028930817 @default.
- W4214883907 hasAuthorship W4214883907A5042759529 @default.
- W4214883907 hasAuthorship W4214883907A5047492630 @default.
- W4214883907 hasAuthorship W4214883907A5047967392 @default.
- W4214883907 hasAuthorship W4214883907A5052988514 @default.
- W4214883907 hasAuthorship W4214883907A5055701476 @default.
- W4214883907 hasAuthorship W4214883907A5056760651 @default.
- W4214883907 hasAuthorship W4214883907A5067052265 @default.
- W4214883907 hasConcept C10138342 @default.
- W4214883907 hasConcept C119857082 @default.
- W4214883907 hasConcept C134018914 @default.
- W4214883907 hasConcept C144133560 @default.
- W4214883907 hasConcept C153083717 @default.
- W4214883907 hasConcept C159110408 @default.
- W4214883907 hasConcept C17744445 @default.
- W4214883907 hasConcept C189708586 @default.
- W4214883907 hasConcept C199539241 @default.
- W4214883907 hasConcept C21279758 @default.
- W4214883907 hasConcept C27415008 @default.
- W4214883907 hasConcept C2776217022 @default.
- W4214883907 hasConcept C2777180221 @default.
- W4214883907 hasConcept C2779473830 @default.
- W4214883907 hasConcept C2780665704 @default.
- W4214883907 hasConcept C39549134 @default.
- W4214883907 hasConcept C41008148 @default.
- W4214883907 hasConcept C555293320 @default.
- W4214883907 hasConcept C71924100 @default.