Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214888960> ?p ?o ?g. }
- W4214888960 endingPage "3090" @default.
- W4214888960 startingPage "3075" @default.
- W4214888960 abstract "This work addresses the problem of implementing model predictive control (MPC) in situations where the training data available for modeling contains possible correlations, and an artificial neural network (ANN)-based model is being used. In particular, we consider a problem where data sets are collected from a process that operates under the closed-loop condition in which correlations are induced between several input and output variables. In this situation, if the correlation problem is not addressed, manipulated inputs (calculated by MPC without considering the specific correlation in the input space) and independently prescribed set-points may require predictions in regions where the model is not trained, resulting in a poor closed-loop performance. To address this issue, principal component analysis (PCA)-based strategies are applied to both the input and output spaces in a way that maintains model validity. To that end, a new constraint on the squared prediction error (SPE) is incorporated into the ANN-based MPC optimization problem to make control actions follow the PCA model built using the training input data. Next, a PCA model is developed using the training output data, and then an optimization problem subject to the SPE constraint is defined to calculate set-points which are achievable. The effectiveness of the proposed ANN-based MPC to track these set-points is demonstrated using a chemical reactor example. Finally, a new autoencoder-based strategy is proposed to compute the achievable set-points. This is performed by replacing the PCA-based constraint with the autoencoder-based constraint in the optimization problem to calculate the set-points. The results indicate that the ANN-based MPC performance is improved when the autoencoder-based set-points are used." @default.
- W4214888960 created "2022-03-05" @default.
- W4214888960 creator A5010867791 @default.
- W4214888960 creator A5016353717 @default.
- W4214888960 creator A5078819171 @default.
- W4214888960 date "2022-02-17" @default.
- W4214888960 modified "2023-10-16" @default.
- W4214888960 title "Artificial Neural Network-Based Model Predictive Control Using Correlated Data" @default.
- W4214888960 cites W1602455568 @default.
- W4214888960 cites W1969838980 @default.
- W4214888960 cites W1971153341 @default.
- W4214888960 cites W1978956894 @default.
- W4214888960 cites W2000858991 @default.
- W4214888960 cites W2003177232 @default.
- W4214888960 cites W2006905088 @default.
- W4214888960 cites W2010043809 @default.
- W4214888960 cites W2016857257 @default.
- W4214888960 cites W2034487019 @default.
- W4214888960 cites W2036706046 @default.
- W4214888960 cites W2059995865 @default.
- W4214888960 cites W2068739623 @default.
- W4214888960 cites W2100495367 @default.
- W4214888960 cites W2133289369 @default.
- W4214888960 cites W2134673975 @default.
- W4214888960 cites W2136182725 @default.
- W4214888960 cites W2189860592 @default.
- W4214888960 cites W2287279778 @default.
- W4214888960 cites W2471217922 @default.
- W4214888960 cites W2475348444 @default.
- W4214888960 cites W2561027863 @default.
- W4214888960 cites W2611457475 @default.
- W4214888960 cites W2769999991 @default.
- W4214888960 cites W2791416295 @default.
- W4214888960 cites W2792270834 @default.
- W4214888960 cites W2795956938 @default.
- W4214888960 cites W2802435027 @default.
- W4214888960 cites W2804858791 @default.
- W4214888960 cites W2883194111 @default.
- W4214888960 cites W2890477073 @default.
- W4214888960 cites W2909784400 @default.
- W4214888960 cites W2954948446 @default.
- W4214888960 cites W2963602521 @default.
- W4214888960 cites W2966398373 @default.
- W4214888960 cites W2982081326 @default.
- W4214888960 cites W2985882047 @default.
- W4214888960 cites W3001599259 @default.
- W4214888960 cites W3008130297 @default.
- W4214888960 cites W3022837682 @default.
- W4214888960 cites W3026997795 @default.
- W4214888960 cites W3037458866 @default.
- W4214888960 cites W3039107826 @default.
- W4214888960 cites W3045204683 @default.
- W4214888960 cites W3081977390 @default.
- W4214888960 cites W3089160504 @default.
- W4214888960 cites W3089634643 @default.
- W4214888960 cites W3111082827 @default.
- W4214888960 cites W3121015950 @default.
- W4214888960 cites W3133445669 @default.
- W4214888960 cites W3135662316 @default.
- W4214888960 cites W3150957078 @default.
- W4214888960 cites W3158052247 @default.
- W4214888960 cites W3180942533 @default.
- W4214888960 cites W3199609905 @default.
- W4214888960 cites W4200168723 @default.
- W4214888960 doi "https://doi.org/10.1021/acs.iecr.1c04339" @default.
- W4214888960 hasPublicationYear "2022" @default.
- W4214888960 type Work @default.
- W4214888960 citedByCount "6" @default.
- W4214888960 countsByYear W42148889602023 @default.
- W4214888960 crossrefType "journal-article" @default.
- W4214888960 hasAuthorship W4214888960A5010867791 @default.
- W4214888960 hasAuthorship W4214888960A5016353717 @default.
- W4214888960 hasAuthorship W4214888960A5078819171 @default.
- W4214888960 hasConcept C101738243 @default.
- W4214888960 hasConcept C11413529 @default.
- W4214888960 hasConcept C126255220 @default.
- W4214888960 hasConcept C137836250 @default.
- W4214888960 hasConcept C154945302 @default.
- W4214888960 hasConcept C172205157 @default.
- W4214888960 hasConcept C177264268 @default.
- W4214888960 hasConcept C199360897 @default.
- W4214888960 hasConcept C21080849 @default.
- W4214888960 hasConcept C2524010 @default.
- W4214888960 hasConcept C27438332 @default.
- W4214888960 hasConcept C2775924081 @default.
- W4214888960 hasConcept C2776036281 @default.
- W4214888960 hasConcept C33923547 @default.
- W4214888960 hasConcept C41008148 @default.
- W4214888960 hasConcept C50644808 @default.
- W4214888960 hasConcept C58489278 @default.
- W4214888960 hasConceptScore W4214888960C101738243 @default.
- W4214888960 hasConceptScore W4214888960C11413529 @default.
- W4214888960 hasConceptScore W4214888960C126255220 @default.
- W4214888960 hasConceptScore W4214888960C137836250 @default.
- W4214888960 hasConceptScore W4214888960C154945302 @default.
- W4214888960 hasConceptScore W4214888960C172205157 @default.
- W4214888960 hasConceptScore W4214888960C177264268 @default.
- W4214888960 hasConceptScore W4214888960C199360897 @default.