Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214894051> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4214894051 endingPage "100677" @default.
- W4214894051 startingPage "100677" @default.
- W4214894051 abstract "• Oil pollution has been one of the most common environmental damages in recent decades. • Polycyclic aromatic hydrocarbons are one of the most common hazardous pollutants . • The back propagation ANN was used for movement model of PAHs in groundwater. • Oil dispersion and total suspended solids have more important in estimating of PAHs. Oil pollution has been one of the most common environmental damages in recent decades, which has been abundant in oil-producing countries such as Iran. This study aimed at using the artificial neural network (ANN) to predict the amount of petroleum pollutants including polycyclic aromatic hydrocarbons (PAHs) in the groundwater of the Tehran Oil Refinery by a set of input features, which modeled in MATLAB R2015a. Accordingly, 13 input features were used for developing an ANN model as inputs, including pH values, electrical conductivity, total dissolved solids, and total suspended solids (TDS and TSS), distance from the source of contamination (Distance), the amount of phenol, oil and grease, and the amount of ions such as potassium, sodium, chlorine, sulfate, magnesium, and calcium. The testing and training data for learning the ANN model were produced by applying 45 data obtained from the analyzing of sample wells around the Tehran refinery in the laboratory. Due to the low number of data, back-propagation networks were employed for modeling. The regression values for training, validation, and test data were equal to 0.997, 0.991, and 0.917, respectively. Based on the results, the best validation performance was detected in epoch 13. The mean square errors were 0.00348, indicating the high accuracy of the ANN method in the prediction and estimation of PAHs in the mentioned site, and thus this model can be used on sites with similar conditions." @default.
- W4214894051 created "2022-03-05" @default.
- W4214894051 creator A5022383049 @default.
- W4214894051 creator A5051867217 @default.
- W4214894051 creator A5068332992 @default.
- W4214894051 creator A5072300298 @default.
- W4214894051 date "2022-12-01" @default.
- W4214894051 modified "2023-09-27" @default.
- W4214894051 title "Application of artificial neural network with the back-propagation algorithm for estimating the amount of polycyclic aromatic hydrocarbons in Tehran Oil Refinery, Iran" @default.
- W4214894051 cites W1970341128 @default.
- W4214894051 cites W1975106432 @default.
- W4214894051 cites W1980437950 @default.
- W4214894051 cites W1983423479 @default.
- W4214894051 cites W1989872094 @default.
- W4214894051 cites W2001756357 @default.
- W4214894051 cites W2007439827 @default.
- W4214894051 cites W2014181466 @default.
- W4214894051 cites W2036320121 @default.
- W4214894051 cites W2039268898 @default.
- W4214894051 cites W2057265291 @default.
- W4214894051 cites W2121021546 @default.
- W4214894051 cites W2126127894 @default.
- W4214894051 cites W2146873462 @default.
- W4214894051 cites W2158130406 @default.
- W4214894051 cites W2170314135 @default.
- W4214894051 cites W2320898104 @default.
- W4214894051 cites W2460929458 @default.
- W4214894051 cites W2507703170 @default.
- W4214894051 cites W2528344287 @default.
- W4214894051 cites W2572120759 @default.
- W4214894051 cites W2603580117 @default.
- W4214894051 cites W2775756557 @default.
- W4214894051 cites W2793751440 @default.
- W4214894051 cites W2794137295 @default.
- W4214894051 cites W2912932127 @default.
- W4214894051 cites W2937722119 @default.
- W4214894051 cites W329447937 @default.
- W4214894051 doi "https://doi.org/10.1016/j.enmm.2022.100677" @default.
- W4214894051 hasPublicationYear "2022" @default.
- W4214894051 type Work @default.
- W4214894051 citedByCount "3" @default.
- W4214894051 countsByYear W42148940512023 @default.
- W4214894051 crossrefType "journal-article" @default.
- W4214894051 hasAuthorship W4214894051A5022383049 @default.
- W4214894051 hasAuthorship W4214894051A5051867217 @default.
- W4214894051 hasAuthorship W4214894051A5068332992 @default.
- W4214894051 hasAuthorship W4214894051A5072300298 @default.
- W4214894051 hasConcept C105168734 @default.
- W4214894051 hasConcept C11413529 @default.
- W4214894051 hasConcept C127413603 @default.
- W4214894051 hasConcept C154945302 @default.
- W4214894051 hasConcept C155032097 @default.
- W4214894051 hasConcept C20309002 @default.
- W4214894051 hasConcept C2985668151 @default.
- W4214894051 hasConcept C39432304 @default.
- W4214894051 hasConcept C41008148 @default.
- W4214894051 hasConcept C50644808 @default.
- W4214894051 hasConcept C548081761 @default.
- W4214894051 hasConcept C78762247 @default.
- W4214894051 hasConceptScore W4214894051C105168734 @default.
- W4214894051 hasConceptScore W4214894051C11413529 @default.
- W4214894051 hasConceptScore W4214894051C127413603 @default.
- W4214894051 hasConceptScore W4214894051C154945302 @default.
- W4214894051 hasConceptScore W4214894051C155032097 @default.
- W4214894051 hasConceptScore W4214894051C20309002 @default.
- W4214894051 hasConceptScore W4214894051C2985668151 @default.
- W4214894051 hasConceptScore W4214894051C39432304 @default.
- W4214894051 hasConceptScore W4214894051C41008148 @default.
- W4214894051 hasConceptScore W4214894051C50644808 @default.
- W4214894051 hasConceptScore W4214894051C548081761 @default.
- W4214894051 hasConceptScore W4214894051C78762247 @default.
- W4214894051 hasLocation W42148940511 @default.
- W4214894051 hasOpenAccess W4214894051 @default.
- W4214894051 hasPrimaryLocation W42148940511 @default.
- W4214894051 hasRelatedWork W1987198731 @default.
- W4214894051 hasRelatedWork W2030244441 @default.
- W4214894051 hasRelatedWork W2133820301 @default.
- W4214894051 hasRelatedWork W2216658125 @default.
- W4214894051 hasRelatedWork W2362189222 @default.
- W4214894051 hasRelatedWork W2391384657 @default.
- W4214894051 hasRelatedWork W2899084033 @default.
- W4214894051 hasRelatedWork W31689825 @default.
- W4214894051 hasRelatedWork W3212352537 @default.
- W4214894051 hasRelatedWork W2516580779 @default.
- W4214894051 hasVolume "18" @default.
- W4214894051 isParatext "false" @default.
- W4214894051 isRetracted "false" @default.
- W4214894051 workType "article" @default.