Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214894402> ?p ?o ?g. }
- W4214894402 abstract "Abstract Seismologists have to deal with overlapping and noisy signals. Techniques such as source separation can be used to solve this problem. Over the past few decades, signal processing techniques used for source separation have advanced significantly for multi‐station settings. But not so many options are available when it comes to single‐station data. Using Machine Learning, we demonstrate the possibility of separating signals for single‐station, one‐component seismic recordings. The technique that we use for seismic signal separation is based on a dual‐path recurrent neural network which is applied directly to the time domain data. Such source separation may find applications in most tasks of seismology, including earthquake analysis, aftershocks, nuclear verification, seismo‐acoustics, and ambient‐noise tomography. We train the network on seismic data from STanford EArthquake Dataset and demonstrate that our approach is (a) capable of denoising seismic data and (b) capable of separating two earthquake signals from one another. In this work, we show that Machine Learning is useful for earthquake‐induced source separation. We provide a reproducible research repository with the algorithms here: https://github.com/crimeacs/source-separation ." @default.
- W4214894402 created "2022-03-05" @default.
- W4214894402 creator A5030676507 @default.
- W4214894402 creator A5069688841 @default.
- W4214894402 creator A5084861530 @default.
- W4214894402 date "2022-03-01" @default.
- W4214894402 modified "2023-09-30" @default.
- W4214894402 title "SEDENOSS: SEparating and DENOising Seismic Signals With Dual‐Path Recurrent Neural Network Architecture" @default.
- W4214894402 cites W1498436455 @default.
- W4214894402 cites W1514036343 @default.
- W4214894402 cites W1543386260 @default.
- W4214894402 cites W1845880232 @default.
- W4214894402 cites W2011301426 @default.
- W4214894402 cites W2018643271 @default.
- W4214894402 cites W2029619882 @default.
- W4214894402 cites W2064675550 @default.
- W4214894402 cites W2065126285 @default.
- W4214894402 cites W2091002776 @default.
- W4214894402 cites W2099741732 @default.
- W4214894402 cites W2100452325 @default.
- W4214894402 cites W2107878631 @default.
- W4214894402 cites W2112393517 @default.
- W4214894402 cites W2113638573 @default.
- W4214894402 cites W2115628544 @default.
- W4214894402 cites W2131774270 @default.
- W4214894402 cites W2132483175 @default.
- W4214894402 cites W2140399408 @default.
- W4214894402 cites W2164001820 @default.
- W4214894402 cites W2164656247 @default.
- W4214894402 cites W2194775991 @default.
- W4214894402 cites W2267186426 @default.
- W4214894402 cites W2275705343 @default.
- W4214894402 cites W2412205031 @default.
- W4214894402 cites W2460847425 @default.
- W4214894402 cites W2475005008 @default.
- W4214894402 cites W2485033567 @default.
- W4214894402 cites W2602807606 @default.
- W4214894402 cites W2734774145 @default.
- W4214894402 cites W2798961812 @default.
- W4214894402 cites W2801119368 @default.
- W4214894402 cites W2811128053 @default.
- W4214894402 cites W2888770834 @default.
- W4214894402 cites W2889230839 @default.
- W4214894402 cites W2891029295 @default.
- W4214894402 cites W2895546528 @default.
- W4214894402 cites W2898280479 @default.
- W4214894402 cites W2899651173 @default.
- W4214894402 cites W2907292342 @default.
- W4214894402 cites W2943839958 @default.
- W4214894402 cites W2948042249 @default.
- W4214894402 cites W2952218014 @default.
- W4214894402 cites W2954996726 @default.
- W4214894402 cites W2962715207 @default.
- W4214894402 cites W2962905190 @default.
- W4214894402 cites W2962935966 @default.
- W4214894402 cites W2963626582 @default.
- W4214894402 cites W2964058413 @default.
- W4214894402 cites W2972411915 @default.
- W4214894402 cites W2972818416 @default.
- W4214894402 cites W2981454243 @default.
- W4214894402 cites W2981857663 @default.
- W4214894402 cites W2982937153 @default.
- W4214894402 cites W2992656573 @default.
- W4214894402 cites W2996969697 @default.
- W4214894402 cites W3010851250 @default.
- W4214894402 cites W3015199127 @default.
- W4214894402 cites W3015306128 @default.
- W4214894402 cites W3015843733 @default.
- W4214894402 cites W3015915076 @default.
- W4214894402 cites W3015960524 @default.
- W4214894402 cites W3016244460 @default.
- W4214894402 cites W3016257794 @default.
- W4214894402 cites W3026926694 @default.
- W4214894402 cites W3036817991 @default.
- W4214894402 cites W3047855151 @default.
- W4214894402 cites W3096730413 @default.
- W4214894402 cites W3098606562 @default.
- W4214894402 cites W3099878876 @default.
- W4214894402 cites W3103145119 @default.
- W4214894402 cites W3103301587 @default.
- W4214894402 cites W3105183525 @default.
- W4214894402 cites W3123807345 @default.
- W4214894402 cites W3125135420 @default.
- W4214894402 cites W3210975088 @default.
- W4214894402 cites W4229658977 @default.
- W4214894402 cites W4233392025 @default.
- W4214894402 cites W4250482878 @default.
- W4214894402 cites W4289665794 @default.
- W4214894402 doi "https://doi.org/10.1029/2021jb023183" @default.
- W4214894402 hasPublicationYear "2022" @default.
- W4214894402 type Work @default.
- W4214894402 citedByCount "8" @default.
- W4214894402 countsByYear W42148944022022 @default.
- W4214894402 countsByYear W42148944022023 @default.
- W4214894402 crossrefType "journal-article" @default.
- W4214894402 hasAuthorship W4214894402A5030676507 @default.
- W4214894402 hasAuthorship W4214894402A5069688841 @default.
- W4214894402 hasAuthorship W4214894402A5084861530 @default.
- W4214894402 hasBestOaLocation W42148944021 @default.
- W4214894402 hasConcept C115961682 @default.