Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214898145> ?p ?o ?g. }
- W4214898145 endingPage "3306" @default.
- W4214898145 startingPage "3289" @default.
- W4214898145 abstract "An online updating energy management strategy (EMS) based on deep reinforcement learning (DRL) with accelerated training is proposed to further reduce fuel consumption and improve the adaptability of the algorithm. The online frame continuously updates neural network parameters every predetermined time. First, the mathematical model of a series hybrid electric tracked vehicle (SHETV) is established, and the accuracy of the model is verified by collecting data from the real vehicle. Second, an intelligent EMS is developed by combining deep deterministic policy gradient (DDPG) and prioritized experience replay (PER). DDPG can improve the control effect and accelerate the training process by eliminating the discretization of variables. The addition of PER can further improve fuel economy and SOC performance and shorten the training time. Third, an online updating framework based on DDPG-PER is proposed to make EMS better adapt to complex driving conditions. Finally, a software-in-the-loop simulation is built, and the effectiveness of the proposed online updating EMS is verified by comparison with other state-of-the-art algorithms. Simulation results show that the training process of the off-line EMS is greatly accelerated, which provides a potential for online application. Meanwhile, the fuel economy of the online updating EMS reached 93.9% of the benchmark DP." @default.
- W4214898145 created "2022-03-05" @default.
- W4214898145 creator A5029752627 @default.
- W4214898145 creator A5042055184 @default.
- W4214898145 creator A5046881277 @default.
- W4214898145 creator A5063376192 @default.
- W4214898145 creator A5071113384 @default.
- W4214898145 creator A5076701232 @default.
- W4214898145 date "2022-09-01" @default.
- W4214898145 modified "2023-10-18" @default.
- W4214898145 title "Online Updating Energy Management Strategy Based on Deep Reinforcement Learning With Accelerated Training for Hybrid Electric Tracked Vehicles" @default.
- W4214898145 cites W1203711702 @default.
- W4214898145 cites W1532096063 @default.
- W4214898145 cites W1968209099 @default.
- W4214898145 cites W1974632557 @default.
- W4214898145 cites W1987813263 @default.
- W4214898145 cites W2017749620 @default.
- W4214898145 cites W2029174125 @default.
- W4214898145 cites W2029515813 @default.
- W4214898145 cites W2044734585 @default.
- W4214898145 cites W2057157575 @default.
- W4214898145 cites W2106868107 @default.
- W4214898145 cites W2236204240 @default.
- W4214898145 cites W2487575379 @default.
- W4214898145 cites W2561463613 @default.
- W4214898145 cites W2567065237 @default.
- W4214898145 cites W2615836844 @default.
- W4214898145 cites W2735199193 @default.
- W4214898145 cites W2767558826 @default.
- W4214898145 cites W2772423517 @default.
- W4214898145 cites W2774156038 @default.
- W4214898145 cites W2775482448 @default.
- W4214898145 cites W2789533028 @default.
- W4214898145 cites W2801441281 @default.
- W4214898145 cites W2803514621 @default.
- W4214898145 cites W2886578595 @default.
- W4214898145 cites W2896726385 @default.
- W4214898145 cites W2900517504 @default.
- W4214898145 cites W2901472231 @default.
- W4214898145 cites W2902910806 @default.
- W4214898145 cites W2904792470 @default.
- W4214898145 cites W2907172124 @default.
- W4214898145 cites W2920056209 @default.
- W4214898145 cites W2939904824 @default.
- W4214898145 cites W2947693385 @default.
- W4214898145 cites W2973588514 @default.
- W4214898145 cites W3093286894 @default.
- W4214898145 doi "https://doi.org/10.1109/tte.2022.3156590" @default.
- W4214898145 hasPublicationYear "2022" @default.
- W4214898145 type Work @default.
- W4214898145 citedByCount "2" @default.
- W4214898145 countsByYear W42148981452023 @default.
- W4214898145 crossrefType "journal-article" @default.
- W4214898145 hasAuthorship W4214898145A5029752627 @default.
- W4214898145 hasAuthorship W4214898145A5042055184 @default.
- W4214898145 hasAuthorship W4214898145A5046881277 @default.
- W4214898145 hasAuthorship W4214898145A5063376192 @default.
- W4214898145 hasAuthorship W4214898145A5071113384 @default.
- W4214898145 hasAuthorship W4214898145A5076701232 @default.
- W4214898145 hasConcept C105795698 @default.
- W4214898145 hasConcept C111919701 @default.
- W4214898145 hasConcept C127413603 @default.
- W4214898145 hasConcept C13280743 @default.
- W4214898145 hasConcept C154945302 @default.
- W4214898145 hasConcept C171146098 @default.
- W4214898145 hasConcept C177606310 @default.
- W4214898145 hasConcept C185798385 @default.
- W4214898145 hasConcept C186370098 @default.
- W4214898145 hasConcept C18903297 @default.
- W4214898145 hasConcept C205649164 @default.
- W4214898145 hasConcept C2781260460 @default.
- W4214898145 hasConcept C33923547 @default.
- W4214898145 hasConcept C41008148 @default.
- W4214898145 hasConcept C44154836 @default.
- W4214898145 hasConcept C45882903 @default.
- W4214898145 hasConcept C50644808 @default.
- W4214898145 hasConcept C7817414 @default.
- W4214898145 hasConcept C79403827 @default.
- W4214898145 hasConcept C86803240 @default.
- W4214898145 hasConcept C97541855 @default.
- W4214898145 hasConcept C98045186 @default.
- W4214898145 hasConceptScore W4214898145C105795698 @default.
- W4214898145 hasConceptScore W4214898145C111919701 @default.
- W4214898145 hasConceptScore W4214898145C127413603 @default.
- W4214898145 hasConceptScore W4214898145C13280743 @default.
- W4214898145 hasConceptScore W4214898145C154945302 @default.
- W4214898145 hasConceptScore W4214898145C171146098 @default.
- W4214898145 hasConceptScore W4214898145C177606310 @default.
- W4214898145 hasConceptScore W4214898145C185798385 @default.
- W4214898145 hasConceptScore W4214898145C186370098 @default.
- W4214898145 hasConceptScore W4214898145C18903297 @default.
- W4214898145 hasConceptScore W4214898145C205649164 @default.
- W4214898145 hasConceptScore W4214898145C2781260460 @default.
- W4214898145 hasConceptScore W4214898145C33923547 @default.
- W4214898145 hasConceptScore W4214898145C41008148 @default.
- W4214898145 hasConceptScore W4214898145C44154836 @default.
- W4214898145 hasConceptScore W4214898145C45882903 @default.
- W4214898145 hasConceptScore W4214898145C50644808 @default.