Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214899626> ?p ?o ?g. }
- W4214899626 abstract "Melanoma is a type of a skin cancer or lesion which has the detrimental ramifications on the human health but with early diagnosis it can be cured easily. The actual identification of skin lesion is very challenging because of factors like a very minute difference between lesion and skin and it is very difficult to differentiate among skin cancer types due to visual comparability. Hence an autonomous system for the diagnosis of true skin cancer type is very useful. In this article, we took the leverage of ensemble learning by combining the features of deep learning architectures with traditional features extraction approaches. For segmentation, we have two pipelines for the feature extraction. We extract the features through traditional split and merge approach as well as from deep learning algorithms of contextual encoding along with the attention mechanism. Later we combine the features of both architectures and predict the segmented region through intersection over union mechanism. After that segmented region is classified into three types of skin lesion using hybrid features of Alex-Net and VGG-16 through the transfer learning approach. The evaluation has been performed using the ISIC and PH2 datasets for which achieved segmentation accuracy is 97.8% and 96.7%, respectively. Moreover, hybrid classification network able to attain the 98.2% accuracy." @default.
- W4214899626 created "2022-03-05" @default.
- W4214899626 creator A5026337741 @default.
- W4214899626 creator A5031402230 @default.
- W4214899626 creator A5043220845 @default.
- W4214899626 creator A5070680984 @default.
- W4214899626 creator A5081748167 @default.
- W4214899626 date "2022-03-03" @default.
- W4214899626 modified "2023-10-18" @default.
- W4214899626 title "Ensemble learning of deep learning and traditional machine learning approaches for skin lesion segmentation and classification" @default.
- W4214899626 cites W1507875776 @default.
- W4214899626 cites W1971560637 @default.
- W4214899626 cites W1982648838 @default.
- W4214899626 cites W2095556812 @default.
- W4214899626 cites W2108598243 @default.
- W4214899626 cites W2115693635 @default.
- W4214899626 cites W2141742651 @default.
- W4214899626 cites W2163568480 @default.
- W4214899626 cites W2194775991 @default.
- W4214899626 cites W2346254524 @default.
- W4214899626 cites W2471219346 @default.
- W4214899626 cites W2560023338 @default.
- W4214899626 cites W2592160412 @default.
- W4214899626 cites W2599182484 @default.
- W4214899626 cites W2603777577 @default.
- W4214899626 cites W2803575519 @default.
- W4214899626 cites W2807537675 @default.
- W4214899626 cites W2883746119 @default.
- W4214899626 cites W2883794474 @default.
- W4214899626 cites W2892053105 @default.
- W4214899626 cites W2902749936 @default.
- W4214899626 cites W2910567234 @default.
- W4214899626 cites W2914359968 @default.
- W4214899626 cites W2921583345 @default.
- W4214899626 cites W2924376714 @default.
- W4214899626 cites W2946122943 @default.
- W4214899626 cites W2947465563 @default.
- W4214899626 cites W2951071083 @default.
- W4214899626 cites W2955308063 @default.
- W4214899626 cites W2963727650 @default.
- W4214899626 cites W2970321969 @default.
- W4214899626 cites W2984486666 @default.
- W4214899626 cites W2990040069 @default.
- W4214899626 cites W2994026422 @default.
- W4214899626 cites W2995166707 @default.
- W4214899626 cites W2999893750 @default.
- W4214899626 cites W3001669684 @default.
- W4214899626 cites W3002954434 @default.
- W4214899626 cites W3004921709 @default.
- W4214899626 cites W3006694830 @default.
- W4214899626 cites W3009382903 @default.
- W4214899626 cites W3012107767 @default.
- W4214899626 cites W3014419815 @default.
- W4214899626 cites W3042433352 @default.
- W4214899626 cites W3102209374 @default.
- W4214899626 cites W3158307528 @default.
- W4214899626 cites W3208002538 @default.
- W4214899626 cites W4211065298 @default.
- W4214899626 cites W4250637767 @default.
- W4214899626 doi "https://doi.org/10.1002/cpe.6907" @default.
- W4214899626 hasPublicationYear "2022" @default.
- W4214899626 type Work @default.
- W4214899626 citedByCount "5" @default.
- W4214899626 countsByYear W42148996262023 @default.
- W4214899626 crossrefType "journal-article" @default.
- W4214899626 hasAuthorship W4214899626A5026337741 @default.
- W4214899626 hasAuthorship W4214899626A5031402230 @default.
- W4214899626 hasAuthorship W4214899626A5043220845 @default.
- W4214899626 hasAuthorship W4214899626A5070680984 @default.
- W4214899626 hasAuthorship W4214899626A5081748167 @default.
- W4214899626 hasConcept C108583219 @default.
- W4214899626 hasConcept C119857082 @default.
- W4214899626 hasConcept C121608353 @default.
- W4214899626 hasConcept C126322002 @default.
- W4214899626 hasConcept C142724271 @default.
- W4214899626 hasConcept C150899416 @default.
- W4214899626 hasConcept C153083717 @default.
- W4214899626 hasConcept C153180895 @default.
- W4214899626 hasConcept C154945302 @default.
- W4214899626 hasConcept C2777789703 @default.
- W4214899626 hasConcept C2988168687 @default.
- W4214899626 hasConcept C41008148 @default.
- W4214899626 hasConcept C52622490 @default.
- W4214899626 hasConcept C71924100 @default.
- W4214899626 hasConcept C89600930 @default.
- W4214899626 hasConceptScore W4214899626C108583219 @default.
- W4214899626 hasConceptScore W4214899626C119857082 @default.
- W4214899626 hasConceptScore W4214899626C121608353 @default.
- W4214899626 hasConceptScore W4214899626C126322002 @default.
- W4214899626 hasConceptScore W4214899626C142724271 @default.
- W4214899626 hasConceptScore W4214899626C150899416 @default.
- W4214899626 hasConceptScore W4214899626C153083717 @default.
- W4214899626 hasConceptScore W4214899626C153180895 @default.
- W4214899626 hasConceptScore W4214899626C154945302 @default.
- W4214899626 hasConceptScore W4214899626C2777789703 @default.
- W4214899626 hasConceptScore W4214899626C2988168687 @default.
- W4214899626 hasConceptScore W4214899626C41008148 @default.
- W4214899626 hasConceptScore W4214899626C52622490 @default.
- W4214899626 hasConceptScore W4214899626C71924100 @default.
- W4214899626 hasConceptScore W4214899626C89600930 @default.