Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214910322> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4214910322 abstract "There are limited data on why the 2016 Zika outbreak in Miami-Dade County, Florida was confined to certain neighborhoods. In this research, Aedes aegypti , the primary vector of Zika virus, are studied to examine neighborhood-level differences in their population dynamics and underlying processes. Weekly mosquito data were acquired from the Miami-Dade County Mosquito Control Division from 2016 to 2020 from 172 traps deployed around Miami-Dade County. Using Random Forest, a machine learning method, predictive models of spatiotemporal dynamics of Ae. aegypti in response to meteorological conditions and neighborhood-specific socio-demographic and physical characteristics, such as land-use and land-cover type and income level, were created. The study area was divided into two groups: areas affected by local transmission of Zika during the 2016 outbreak and unaffected areas. Aedes aegypti populations in areas affected by Zika were more strongly influenced by 14- and 21-day lagged weather conditions. In the unaffected areas, mosquito populations were more strongly influenced by land-use and day-of-collection weather conditions. There are neighborhood-scale differences in Ae. aegypti population dynamics. These differences in turn influence vector-borne disease diffusion in a region. These results have implications for vector control experts to lead neighborhood-specific vector control strategies and for epidemiologists to guide vector-borne disease risk preparations, especially for containing the spread of vector-borne disease in response to ongoing climate change." @default.
- W4214910322 created "2022-03-05" @default.
- W4214910322 creator A5041225643 @default.
- W4214910322 creator A5051802716 @default.
- W4214910322 creator A5053644621 @default.
- W4214910322 creator A5063605022 @default.
- W4214910322 creator A5064122077 @default.
- W4214910322 creator A5083027846 @default.
- W4214910322 creator A5090692917 @default.
- W4214910322 date "2022-03-03" @default.
- W4214910322 modified "2023-10-18" @default.
- W4214910322 title "Using machine learning to understand microgeographic determinants of the Zika vector, Aedes aegypti" @default.
- W4214910322 doi "https://doi.org/10.1101/2022.03.03.482880" @default.
- W4214910322 hasPublicationYear "2022" @default.
- W4214910322 type Work @default.
- W4214910322 citedByCount "0" @default.
- W4214910322 crossrefType "posted-content" @default.
- W4214910322 hasAuthorship W4214910322A5041225643 @default.
- W4214910322 hasAuthorship W4214910322A5051802716 @default.
- W4214910322 hasAuthorship W4214910322A5053644621 @default.
- W4214910322 hasAuthorship W4214910322A5063605022 @default.
- W4214910322 hasAuthorship W4214910322A5064122077 @default.
- W4214910322 hasAuthorship W4214910322A5083027846 @default.
- W4214910322 hasAuthorship W4214910322A5090692917 @default.
- W4214910322 hasBestOaLocation W42149103221 @default.
- W4214910322 hasConcept C104317684 @default.
- W4214910322 hasConcept C116675565 @default.
- W4214910322 hasConcept C159047783 @default.
- W4214910322 hasConcept C159390177 @default.
- W4214910322 hasConcept C173758957 @default.
- W4214910322 hasConcept C18903297 @default.
- W4214910322 hasConcept C205649164 @default.
- W4214910322 hasConcept C2522874641 @default.
- W4214910322 hasConcept C2606647 @default.
- W4214910322 hasConcept C2777053367 @default.
- W4214910322 hasConcept C2777775583 @default.
- W4214910322 hasConcept C2780688631 @default.
- W4214910322 hasConcept C2908647359 @default.
- W4214910322 hasConcept C39432304 @default.
- W4214910322 hasConcept C40767141 @default.
- W4214910322 hasConcept C55493867 @default.
- W4214910322 hasConcept C58640448 @default.
- W4214910322 hasConcept C71924100 @default.
- W4214910322 hasConcept C86803240 @default.
- W4214910322 hasConcept C92087593 @default.
- W4214910322 hasConcept C99454951 @default.
- W4214910322 hasConceptScore W4214910322C104317684 @default.
- W4214910322 hasConceptScore W4214910322C116675565 @default.
- W4214910322 hasConceptScore W4214910322C159047783 @default.
- W4214910322 hasConceptScore W4214910322C159390177 @default.
- W4214910322 hasConceptScore W4214910322C173758957 @default.
- W4214910322 hasConceptScore W4214910322C18903297 @default.
- W4214910322 hasConceptScore W4214910322C205649164 @default.
- W4214910322 hasConceptScore W4214910322C2522874641 @default.
- W4214910322 hasConceptScore W4214910322C2606647 @default.
- W4214910322 hasConceptScore W4214910322C2777053367 @default.
- W4214910322 hasConceptScore W4214910322C2777775583 @default.
- W4214910322 hasConceptScore W4214910322C2780688631 @default.
- W4214910322 hasConceptScore W4214910322C2908647359 @default.
- W4214910322 hasConceptScore W4214910322C39432304 @default.
- W4214910322 hasConceptScore W4214910322C40767141 @default.
- W4214910322 hasConceptScore W4214910322C55493867 @default.
- W4214910322 hasConceptScore W4214910322C58640448 @default.
- W4214910322 hasConceptScore W4214910322C71924100 @default.
- W4214910322 hasConceptScore W4214910322C86803240 @default.
- W4214910322 hasConceptScore W4214910322C92087593 @default.
- W4214910322 hasConceptScore W4214910322C99454951 @default.
- W4214910322 hasLocation W42149103221 @default.
- W4214910322 hasOpenAccess W4214910322 @default.
- W4214910322 hasPrimaryLocation W42149103221 @default.
- W4214910322 hasRelatedWork W2346252141 @default.
- W4214910322 hasRelatedWork W2508011833 @default.
- W4214910322 hasRelatedWork W2531306767 @default.
- W4214910322 hasRelatedWork W2800207338 @default.
- W4214910322 hasRelatedWork W2884704122 @default.
- W4214910322 hasRelatedWork W2892065025 @default.
- W4214910322 hasRelatedWork W2951741683 @default.
- W4214910322 hasRelatedWork W3046384197 @default.
- W4214910322 hasRelatedWork W4214910322 @default.
- W4214910322 hasRelatedWork W4313306317 @default.
- W4214910322 isParatext "false" @default.
- W4214910322 isRetracted "false" @default.
- W4214910322 workType "article" @default.