Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214913449> ?p ?o ?g. }
- W4214913449 endingPage "1280" @default.
- W4214913449 startingPage "1280" @default.
- W4214913449 abstract "Despite great achievements in classifying mammographic breast-mass images via deep-learning (DL), obtaining large amounts of training data and ensuring generalizations across different datasets with robust and well-optimized algorithms remain a challenge. ImageNet-based transfer learning (TL) and patch classifiers have been utilized to address these challenges. However, researchers have been unable to achieve the desired performance for DL to be used as a standalone tool. In this study, we propose a novel multi-stage TL from ImageNet and cancer cell line image pre-trained models to classify mammographic breast masses as either benign or malignant. We trained our model on three public datasets: Digital Database for Screening Mammography (DDSM), INbreast, and Mammographic Image Analysis Society (MIAS). In addition, a mixed dataset of the images from these three datasets was used to train the model. We obtained an average five-fold cross validation AUC of 1, 0.9994, 0.9993, and 0.9998 for DDSM, INbreast, MIAS, and mixed datasets, respectively. Moreover, the observed performance improvement using our method against the patch-based method was statistically significant, with a p-value of 0.0029. Furthermore, our patchless approach performed better than patch- and whole image-based methods, improving test accuracy by 8% (91.41% vs. 99.34%), tested on the INbreast dataset. The proposed method is of significant importance in solving the need for a large training dataset as well as reducing the computational burden in training and implementing the mammography-based deep-learning models for early diagnosis of breast cancer." @default.
- W4214913449 created "2022-03-05" @default.
- W4214913449 creator A5005504673 @default.
- W4214913449 creator A5025292160 @default.
- W4214913449 creator A5027892263 @default.
- W4214913449 date "2022-03-01" @default.
- W4214913449 modified "2023-10-06" @default.
- W4214913449 title "Patchless Multi-Stage Transfer Learning for Improved Mammographic Breast Mass Classification" @default.
- W4214913449 cites W1494052777 @default.
- W4214913449 cites W1996368241 @default.
- W4214913449 cites W2057727798 @default.
- W4214913449 cites W2104344373 @default.
- W4214913449 cites W2117539524 @default.
- W4214913449 cites W2133195316 @default.
- W4214913449 cites W2137778267 @default.
- W4214913449 cites W2162445884 @default.
- W4214913449 cites W2330219538 @default.
- W4214913449 cites W2476370993 @default.
- W4214913449 cites W2510224130 @default.
- W4214913449 cites W2556808608 @default.
- W4214913449 cites W2560617851 @default.
- W4214913449 cites W2580480204 @default.
- W4214913449 cites W2736374171 @default.
- W4214913449 cites W2755855890 @default.
- W4214913449 cites W2777992862 @default.
- W4214913449 cites W2783710041 @default.
- W4214913449 cites W2792983091 @default.
- W4214913449 cites W2793956967 @default.
- W4214913449 cites W2794622599 @default.
- W4214913449 cites W2807915975 @default.
- W4214913449 cites W2892235178 @default.
- W4214913449 cites W2896485798 @default.
- W4214913449 cites W2944016032 @default.
- W4214913449 cites W2946053491 @default.
- W4214913449 cites W2954996726 @default.
- W4214913449 cites W2964189045 @default.
- W4214913449 cites W2964642168 @default.
- W4214913449 cites W2965014579 @default.
- W4214913449 cites W2975029521 @default.
- W4214913449 cites W2993303538 @default.
- W4214913449 cites W2996253120 @default.
- W4214913449 cites W2998175747 @default.
- W4214913449 cites W3000795845 @default.
- W4214913449 cites W3012777263 @default.
- W4214913449 cites W3021818594 @default.
- W4214913449 cites W3033750579 @default.
- W4214913449 cites W3035688850 @default.
- W4214913449 cites W304373761 @default.
- W4214913449 cites W3080906432 @default.
- W4214913449 cites W3085048973 @default.
- W4214913449 cites W3087457015 @default.
- W4214913449 cites W3089588696 @default.
- W4214913449 cites W3091423270 @default.
- W4214913449 cites W3111749256 @default.
- W4214913449 cites W3112557529 @default.
- W4214913449 cites W3118741877 @default.
- W4214913449 cites W3128528820 @default.
- W4214913449 cites W3128646645 @default.
- W4214913449 cites W3129350780 @default.
- W4214913449 cites W3132749456 @default.
- W4214913449 cites W3150212014 @default.
- W4214913449 cites W3173800204 @default.
- W4214913449 cites W3176923149 @default.
- W4214913449 cites W3208019901 @default.
- W4214913449 cites W41027960 @default.
- W4214913449 cites W4200467578 @default.
- W4214913449 cites W4205942412 @default.
- W4214913449 cites W4361868505 @default.
- W4214913449 doi "https://doi.org/10.3390/cancers14051280" @default.
- W4214913449 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35267587" @default.
- W4214913449 hasPublicationYear "2022" @default.
- W4214913449 type Work @default.
- W4214913449 citedByCount "10" @default.
- W4214913449 countsByYear W42149134492022 @default.
- W4214913449 countsByYear W42149134492023 @default.
- W4214913449 crossrefType "journal-article" @default.
- W4214913449 hasAuthorship W4214913449A5005504673 @default.
- W4214913449 hasAuthorship W4214913449A5025292160 @default.
- W4214913449 hasAuthorship W4214913449A5027892263 @default.
- W4214913449 hasBestOaLocation W42149134491 @default.
- W4214913449 hasConcept C108583219 @default.
- W4214913449 hasConcept C119857082 @default.
- W4214913449 hasConcept C121608353 @default.
- W4214913449 hasConcept C126322002 @default.
- W4214913449 hasConcept C146357865 @default.
- W4214913449 hasConcept C150899416 @default.
- W4214913449 hasConcept C151730666 @default.
- W4214913449 hasConcept C153180895 @default.
- W4214913449 hasConcept C154945302 @default.
- W4214913449 hasConcept C2780472235 @default.
- W4214913449 hasConcept C2781281974 @default.
- W4214913449 hasConcept C41008148 @default.
- W4214913449 hasConcept C530470458 @default.
- W4214913449 hasConcept C71924100 @default.
- W4214913449 hasConcept C86803240 @default.
- W4214913449 hasConceptScore W4214913449C108583219 @default.
- W4214913449 hasConceptScore W4214913449C119857082 @default.
- W4214913449 hasConceptScore W4214913449C121608353 @default.