Matches in SemOpenAlex for { <https://semopenalex.org/work/W4214913462> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4214913462 endingPage "113766" @default.
- W4214913462 startingPage "113766" @default.
- W4214913462 abstract "The availability of sparse and high dimensional consumer shopping data poses a challenge for researchers for accurate and efficient analysis. While deep learning models can handle such data, most of the results from these models are uninterpretable. This greatly limits their value in applications aimed at better understanding multicategory shopping behavior and assisting managerial decision-making. Thus, a new approach is needed to analyze high dimensional consumer shopping data in an efficient and interpretable manner, with the potential to greatly strengthen decision support systems for managers especially at large consumer packaged goods firms and giant retailers. We propose a Bayesian deep learning approach based on Variational Autoencoder (VAE) designed to efficiently capture often complex and multifaceted interrelationships across items in the shopping baskets, in the form of substitute and complementary cross effects (which are observable and controllable) and coincidences (which are not). The benefits of the proposed approach are empirically demonstrated by applying our model to a high dimensional supermarket shopping dataset covering very large numbers of products at the stock-keeping unit (SKU) level, households, and shopping trips. We discuss implications for managerial decision-making and identify promising research directions." @default.
- W4214913462 created "2022-03-05" @default.
- W4214913462 creator A5010090361 @default.
- W4214913462 creator A5037685564 @default.
- W4214913462 date "2022-06-01" @default.
- W4214913462 modified "2023-09-27" @default.
- W4214913462 title "Multicategory choice modeling with sparse and high dimensional data: A Bayesian deep learning approach" @default.
- W4214913462 cites W1990863283 @default.
- W4214913462 cites W2025359908 @default.
- W4214913462 cites W2028791710 @default.
- W4214913462 cites W2031988475 @default.
- W4214913462 cites W2037113271 @default.
- W4214913462 cites W2047375989 @default.
- W4214913462 cites W2059901941 @default.
- W4214913462 cites W2063251682 @default.
- W4214913462 cites W2089308908 @default.
- W4214913462 cites W2094092370 @default.
- W4214913462 cites W2104686997 @default.
- W4214913462 cites W2107540974 @default.
- W4214913462 cites W2112229161 @default.
- W4214913462 cites W2129896612 @default.
- W4214913462 cites W2131130400 @default.
- W4214913462 cites W2135194391 @default.
- W4214913462 cites W2144243068 @default.
- W4214913462 cites W2153227754 @default.
- W4214913462 cites W2153734407 @default.
- W4214913462 cites W2163407464 @default.
- W4214913462 cites W2168877816 @default.
- W4214913462 cites W2178806032 @default.
- W4214913462 cites W2605106260 @default.
- W4214913462 cites W2618812001 @default.
- W4214913462 cites W2783444794 @default.
- W4214913462 cites W2790255018 @default.
- W4214913462 cites W2948978827 @default.
- W4214913462 cites W2960267324 @default.
- W4214913462 cites W3016709501 @default.
- W4214913462 cites W3096831136 @default.
- W4214913462 cites W3101380508 @default.
- W4214913462 cites W3121212938 @default.
- W4214913462 cites W3123521189 @default.
- W4214913462 cites W80257235 @default.
- W4214913462 doi "https://doi.org/10.1016/j.dss.2022.113766" @default.
- W4214913462 hasPublicationYear "2022" @default.
- W4214913462 type Work @default.
- W4214913462 citedByCount "1" @default.
- W4214913462 countsByYear W42149134622023 @default.
- W4214913462 crossrefType "journal-article" @default.
- W4214913462 hasAuthorship W4214913462A5010090361 @default.
- W4214913462 hasAuthorship W4214913462A5037685564 @default.
- W4214913462 hasBestOaLocation W42149134621 @default.
- W4214913462 hasConcept C101738243 @default.
- W4214913462 hasConcept C107673813 @default.
- W4214913462 hasConcept C108583219 @default.
- W4214913462 hasConcept C119857082 @default.
- W4214913462 hasConcept C154945302 @default.
- W4214913462 hasConcept C41008148 @default.
- W4214913462 hasConceptScore W4214913462C101738243 @default.
- W4214913462 hasConceptScore W4214913462C107673813 @default.
- W4214913462 hasConceptScore W4214913462C108583219 @default.
- W4214913462 hasConceptScore W4214913462C119857082 @default.
- W4214913462 hasConceptScore W4214913462C154945302 @default.
- W4214913462 hasConceptScore W4214913462C41008148 @default.
- W4214913462 hasLocation W42149134621 @default.
- W4214913462 hasOpenAccess W4214913462 @default.
- W4214913462 hasPrimaryLocation W42149134621 @default.
- W4214913462 hasRelatedWork W2669956259 @default.
- W4214913462 hasRelatedWork W2939353110 @default.
- W4214913462 hasRelatedWork W3165097609 @default.
- W4214913462 hasRelatedWork W3165463024 @default.
- W4214913462 hasRelatedWork W4223943233 @default.
- W4214913462 hasRelatedWork W4287178339 @default.
- W4214913462 hasRelatedWork W4312200629 @default.
- W4214913462 hasRelatedWork W4327774331 @default.
- W4214913462 hasRelatedWork W4360585206 @default.
- W4214913462 hasRelatedWork W4380075502 @default.
- W4214913462 hasVolume "157" @default.
- W4214913462 isParatext "false" @default.
- W4214913462 isRetracted "false" @default.
- W4214913462 workType "article" @default.